Эконометрика
| Описание | Эконометрика — наука, изучающая количественные и качественные экономические взаимосвязи с помощью математических и статистических методов. Современное определение предмета эконометрики было выработано в уставе Эконометрического общества, которое главными целями назвало использование статистики и математики для развития экономической теории. Термин «эконометрика» состоит из двух частей: «эконо» — от «экономика» и «метрика» — от «измерение». Теоретическая эконометрика рассматривает статистические свойства оценок и испытаний, в то время как прикладная эконометрика занимается применением эконометрических методов для оценки экономических теорий. |
|---|---|
| Область знаний | Математика, Информатика, Экономика, Статистика |
| Авторы | |
| Поясняющее видео | |
| Близкие понятия | Экономика, Вычислительная экономика, Корреляция |
| Среды и средства для освоения понятия | RStudio, Jupyter, NetLogo, Python |
Основные понятия, методы и модели эконометрики
| Description | |
|---|---|
| Автокорреляция | Автокорреляция — это статистическая мера, показывающая степень связности между значениями одной и той же переменной в разные моменты времени или с определённым запаздыванием (лагом). Проще говоря, она измеряет, насколько текущее значение ряда связано с его предыдущими значениями. Временной ряд демонстрирует автокорреляцию, если значение в момент времени t связано с значениями в моменты времени t-1, t-2 и так далее. В эконометрике и социальной статистике для корректного построения моделей важно учитывать автокорреляцию, так как она влияет на эффективность оценок параметров модели. |
| Анализ временных рядов | Анализ временных рядов — совокупность математико-статистических методов для выявления структуры временных рядов и их прогнозирования. Временно́й ряд (или ряд динамики) — собранный в разные моменты времени статистический материал о значении каких-либо параметров (в простейшем случае одного) исследуемого процесса. Каждая единица статистического материала называется измерением или отсчётом. Во временном ряде для каждого отсчёта должно быть указано время измерения или номер измерения по порядку. Анализ структуры временного ряда позволяет выявить основные компоненты:
|
| Гетероскедастичность | Гетероскедастичность в эконометрике — это свойство, при котором дисперсия случайной ошибки регрессионной модели меняется в зависимости от значений независимых переменных или положения наблюдений в пространстве. Гетероскедастичность (англ. heteroscedasticity) характеризуется непостоянством дисперсии случайной ошибки. Классический пример — зависимость между доходом и расходами: у людей с высоким доходом вариабельность расходов значительно выше. |
| Инструментальная переменная | Инструментальная переменная (IV, англ. Instrumental Variable) — метод оценки причинно-следственных эффектов в присутствии коррелированных с ошибкой объясняющих переменных (эндогенных регрессоров). Позволяет получить состоятельные оценки при нарушении классического предположения об экзогенности. |
| Метод наименьших квадратов | Метод наименьших квадратов (МНК) (англ. Least Squares Method, Ordinary Least Squares, OLS) — это математический метод оценки параметров статистических моделей, основанный на принципе минимизации суммы квадратов отклонений между наблюдаемыми и предсказанными моделью значениями. |
| Мультиколлинеарность | Мультиколлинеарность в эконометрике — это ситуация, когда одна или несколько независимых переменных регрессионной модели являются линейно зависимыми или сильно коррелированными между собой. Такой эффект затрудняет оценку индивидуального влияния каждой переменной на зависимую и приводит к неустойчивым, высоко варьирующимся коэффициентам и завышенным стандартным ошибкам. Мультиколлинеарность — важное свойство, которое необходимо учитывать при построении эконометрических моделей на основе данных из агентных моделей NetLogo, чтобы избежать ошибочной интерпретации значимости переменных и нестабильных оценок коэффициентов. |
| Панельные данные | Панельные данные (panel data) — это тип данных, в котором наблюдения собираются по нескольким единицам (индивидам, организациям, регионам) в течение нескольких периодов времени. Такой формат сочетает в себе преимущества как временных рядов, так и поперечных срезов, позволяя анализировать динамику внутри единиц и индивидуальные различия. |
| Регрессионный анализ | Регрессио́нный анализ — набор статистических методов исследования влияния одной или нескольких независимых переменных на зависимую переменную. Независимые переменные иначе называют регрессорами или предикторами, а зависимые переменные — критериальными или регрессантами. Терминология зависимых и независимых переменных отражает лишь математическую зависимость переменных, а не причинно-следственные отношения. Наиболее распространённый вид регрессионного анализа — линейная регрессия, когда находят линейную функцию, которая, согласно определённым математическим критериям, наиболее соответствует данным. Например, в методе наименьших квадратов вычисляется прямая (или гиперплоскость), сумма квадратов между которой и данными минимальна. |
Агентное моделирование в эконометрике
Современная эконометрика активно использует агентное моделирование (Agent-Based Modeling, ABM) для изучения сложных экономических процессов. NetLogo предоставляет мощную платформу для создания таких моделей:
| Description | |
|---|---|
| Central Limit Theorem | Модель "Central Limit Theorem" представляет население, распределённое по некоторой переменной (например, общие активы в тысячах долларов). Население распределено произвольно — не обязательно нормально — но выборочные средние из этой популяции тем не менее накапливаются в распределении, которое приближается к нормальной кривой. |
| Fire (model) |
Запустите модель Fire несколько раз. Если мы запустим его с низкой плотностью деревьев, мы увидим, как и ожидалось, очень небольшое распространение огня. Если мы запустим его с очень высокой плотностью деревьев, мы, как и ожидалось, увидим, как лес уничтожается неумолимым маршем огня. Чего ожидать при средней плотности? Многие предполагают, что если плотность установлена на 50 процентов, то вероятность того, что огонь достигнет правого края леса, будет 50 процентов. Однако если мы попробуем это сделать, то увидим, что при 50-процентной плотности огонь не распространяется сильно. Если мы увеличим его до 57 процентов, огонь горит больше, но обычно все равно не достигает другой стороны леса. Однако если мы увеличим плотность до 61 процента, то есть всего на 2 процента больше, огонь неизбежно достигнет другой стороны. Это неожиданно. Мы ожидаем, что небольшое изменение плотности окажет относительно небольшое влияние на распространение огня. Но, как выясняется, модель Fire имеет «критический параметр» 59% плотности. |
| Language Change | Модель «Language Change» (Изменение языка) представляет собой агентную симуляцию, в которой каждый агент (житель сетки) владеет одной из нескольких языковых форм (например, вариантов произношения или лексических единиц). На каждом шаге моделирования:
Каждый агент выбирает одного случайного соседа из своих четырёх или восьми соседних клеток. Агент «усваивает» языковую форму соседа с заданной вероятностью (параметр перехода), что моделирует влияние контакта и заимствования. При этом может происходить «ошибка передачи» (мутация), когда форма изменяется случайным образом с малой вероятностью. По мере итераций формируются языковые «облака» и кластеры, отражающие процессы диалектообразования, распространения новаций и угасания старых вариантов. |
| Minority Game | Модель Minority Game (Игра меньшинства) — это упрощённая модель экономического рынка, в которой агенты конкурируют, пытаясь оказаться в меньшинстве. На каждом временном шаге каждый агент выбирает одну из двух сторон (0 или 1). Побеждают те агенты, которые оказались в **меньшинстве** — на стороне, выбранной меньшим числом участников. За каждую победу агент получает очко. Каждый агент располагает набором предопределённых стратегий (например, пять стратегий). Стратегия — это правило, которое на основе истории прошлых результатов предсказывает, какая сторона будет в меньшинстве. Важно: агенты видят только *историю победивших сторон*, а не количество агентов, выбравших каждую сторону. История прошлых выборов кодируется в двоичное число и используется как индекс для поиска в таблице стратегии. Каждая стратегия отслеживает свои собственные виртуальные очки — как она бы предсказывала на каждом шаге. Агент всегда использует стратегию с наибольшим количеством виртуальных очков. |
| Random Basic Advanced | Модель "Random Basic Advanced" исследует влияние размера выборки на распределение выборочного среднего. При каждом запуске выбирается выборка случайных значений. Эти значения предаются агентам - "посланникам", каждый из которых несёт кирпичик к вершине соответствующего столбца в гистограмме. |
| Simple Economy | Simple Economy представляет собой базовую модель экономического обмена из второй главы учебника "Introduction to Agent-Based Modeling" Ури Виленского и Уильяма Рэнда. Это мысленный эксперимент простейшей экономической системы, где на каждом временном шаге каждый агент передает один доллар случайно выбранному другому агенту, если у него есть деньги для передачи. |
| Sugarscape model | Sugarscape model (сахарная модель) - один из методов(моделей) разработки искусственного общества. Модель стала популярна благодаря известной работе «Growing Artificial Societies». Является одной из простых моделей и прекрасным инструментом для обсуждения и экспериментального исследования ряда научных вопросов. Имеется некоторая окружающая среда — сахарный ландшафт, где в двумерном пространстве разбросан сахар — где-то больше, где-то меньше; и туда же помещены агенты-жуки, которые ползают по сахарному ландшафту по простым правилам: агенту надо есть сахар, и он перемещается туда, где сахара больше. Так они двигаются, поедают сахар, который появляется в той или иной точке тоже по каким-то законам. Наблюдая за поведением агентов на экране мы видим то, что Джошуа Эпштейн и Роберт Акстелл определили как прото-историю или Proto-Narrative
|
| Urban Suite - Economic Disparity | Модель "Urban Suite - Economic Disparity" представляет упрощённую городскую экономическую систему, где агенты с различным социально-экономическим статусом конкурируют за землю в городском пространстве. Модель исследует процессы пространственной сегрегации и формирования экономического неравенства в городской среде. В модели есть фиксированные рабочие места (серые квадраты), распределённые по городской территории. Агенты стремятся минимизировать расстояние до ближайшего места работы. |
| Wealth Distribution | Модель распределения богатства в экономике. Данная модель представляет собой агентную вычислительную модель (Agent-based Model) распределения богатства, основанную на классической работе Эпштейна и Акстелла "Sugarscape". Модель демонстрирует механизм неравенства в распределении богатства, где "богатые становятся богаче, а бедные беднее", что соответствует закону Парето. |
| Потребительский выбор (модель) | Модель симулирует, как информационное и нормативное социальное влияние вместе с привычками определяют динамику долей рынка двух конкурирующих продуктов переменного качества. Агенты могут:
|

