Wealth Distribution: различия между версиями

Материал из Поле цифровой дидактики
Нет описания правки
 
(не показано 10 промежуточных версий 2 участников)
Строка 1: Строка 1:
{{Model
{{Model
|Description=== Описание ==
|Description=Модель распределения богатства в экономике. Данная модель представляет собой агентную вычислительную модель (Agent-based Model) распределения богатства, основанную на классической работе Эпштейна и Акстелла "Sugarscape". Модель демонстрирует механизм неравенства в распределении богатства, где "богатые становятся богаче, а бедные беднее", что соответствует закону Парето.
Модель ''Wealth Distribution'' — агентно-ориентированная вычислительная модель (Agent-Based Model), предназначенная для анализа механизмов формирования экономического неравенства. Концептуально модель восходит к классической работе Эпштейна и Акстелла ''Sugarscape'' и демонстрирует, как устойчивое расслоение по богатству может возникать эндогенно: вследствие локальных правил поведения агентов, пространственной неоднородности ресурсов и динамики накопления, а не за счёт заданных извне «несправедливых» институтов.
 
В симуляции агенты перемещаются в пределах ограниченной видимости, выбирая клетки с максимальным запасом зерна, собирают ресурс и потребляют его в соответствии с индивидуальным метаболизмом. Даже при одинаковых правилах игры формируется распределение богатства с сильной концентрацией у небольшой доли агентов, что проявляется в отклонении кривой Лоренца от линии равенства и росте коэффициента Джини; в предельном случае динамика может напоминать парето-подобное распределение.
 
* См. [[Система эконометрических уравнений]]
* [[Sugarscape model]] — классический вариант модели
 
; Ключевые элементы:
* Агенты с различным метаболизмом и видимостью (гетерогенность параметров)
* Ограниченные возобновляемые ресурсы (зерно) и пространственная неоднородность среды
* Жизненные циклы (старение, смерть и «перерождение» агентов) при отсутствии прямого наследования богатства
* Количественная оценка неравенства с помощью кривой Лоренца и коэффициента Джини
 
; Эконометрическое применение:
В модели рассчитывается [[коэффициент Джини|коэффициент Джини]] как стандартная мера неравенства распределения богатства:
 
<math>\text{Gini} = 1 - \sum_{k=0}^{n-1}(X_{k+1} - X_k)(Y_{k+1} + Y_k)</math>
где <math>X</math> — кумулятивная доля населения, а <math>Y</math> — кумулятивная доля богатства.
|Field_of_knowledge=Социология, Экономика, Обществознание, Статистика
|Field_of_knowledge=Социология, Экономика, Обществознание, Статистика
|Environment=NetLogo
|Environment=NetLogo
Строка 24: Строка 6:
}}
}}
== Описание ==
== Описание ==
Модель ''Wealth Distribution'' представляет собой агентно-ориентированную вычислительную модель (Agent-Based Model), предназначенную для анализа механизмов формирования экономического неравенства. Концептуально модель восходит к классической работе Эпштейна и Акстелла ''Sugarscape'' и демонстрирует, каким образом устойчивое расслоение по богатству может возникать эндогенно — как результат локальных правил поведения агентов, пространственной неоднородности ресурсов и динамики накопления, а не вследствие заранее заданных институциональных перекосов.
Симуляция распределения богатства, демонстрирующая [[закон Парето]] и неравенство доходов.
 
В симуляции экономические агенты перемещаются в пределах ограниченной видимости, выбирая участки среды с максимальным запасом зерна, собирают ресурс и потребляют его в соответствии с индивидуальным метаболизмом. Несмотря на равенство формальных правил и отсутствие прямого наследования богатства, в модели формируется устойчивая концентрация ресурсов у небольшой доли агентов. Это проявляется в отклонении кривой Лоренца от линии абсолютного равенства и росте коэффициента Джини; в предельном случае распределение богатства может напоминать парето-подобную форму.


* См. [[Система эконометрических уравнений]]
* См. [[Система эконометрических уравнений]]
* [[Sugarscape model]] классический вариант модели
* [[Sugarscape model]] -классический вариант модели


; Ключевые элементы:
; Ключевые элементы:
* Экономические агенты с гетерогенными параметрами (метаболизм, видимость)
* Агенты с различным метаболизмом
* Ограниченные возобновляемые ресурсы (зерно) и пространственная неоднородность среды
* Ограниченные ресурсы (зерно)
* Жизненные циклы агентов (старение, смерть и «перерождение») при отсутствии прямого наследования богатства
* Наследование и жизненные циклы
* Количественная оценка неравенства с использованием кривой Лоренца и коэффициента Джини


; Эконометрическое применение:
; Эконометрическое применение:
В модели рассчитывается [[коэффициент Джини|коэффициент Джини]] как стандартная статистическая мера неравенства распределения богатства:
Расчет [[коэффициент Джини|коэффициента Джини]] для измерения неравенства:


<math>\text{Gini} = 1 - \sum_{k=0}^{n-1}(X_{k+1} - X_k)(Y_{k+1} + Y_k)</math>
<math>\text{Gini} = 1 - \sum_{k=0}^{n-1}(X_{k+1} - X_k)(Y_{k+1} + Y_k)</math>
 
где X — кумулятивная доля населения, Y — кумулятивная доля богатства.
где <math>X</math> — кумулятивная доля населения, а <math>Y</math> — кумулятивная доля богатства.


== Основные агенты и их свойства ==
== Основные агенты и их свойства ==


В агентно-ориентированной модели ''Wealth Distribution'' используются два фундаментальных типа агентов: элементы пространственной среды (участки земли, ''patches'') и экономические агенты (люди). Такое разделение позволяет аналитически отделить экзогенную структуру распределения ресурсов от эндогенной динамики поведения и накопления богатства.
В модели присутствуют два типа агентов:


=== Участки среды (patches) ===
; Участки земли ([[patches]]) - содержат зерно с определенной емкостью роста:
* Каждый участок имеет максимальную емкость зерна <math>C_i</math>
* На каждом такте участок восстанавливает одну единицу зерна до максимума
*  Цвет участка отражает количество зерна: чем темнее желтый, тем больше зерна


Участки среды представляют собой элементы двумерного дискретного пространства, на которых размещён возобновляемый экономический ресурс — зерно. Каждый участок характеризуется следующими параметрами:
;Люди (agents) - экономические агенты со следующими характеристиками:
 
* Метаболизм <math>m_i</math> - количество зерна, потребляемое за один такт (тик)
* текущий запас зерна;
* Видимость <math>v_i</math> - радиус видимости для поиска зерна 
* максимальная ёмкость зерна <math>C_i</math>, определяющая потенциальный уровень ресурса;
* Продолжительность жизни <math>L_i</math> - случайная величина от 60 до 100 тактов
* правило восстановления ресурса: на каждом такте запас зерна увеличивается до максимального значения при наличии недоиспользования.
* Богатство <math>W_i</math> - накопленное количество зерна
 
Пространственная неоднородность значений <math>C_i</math> формирует устойчивые кластеры участков с высокой и низкой ресурсной обеспеченностью. Тем самым среда задаёт экзогенные ограничения, в рамках которых разворачивается экономическое взаимодействие агентов.
 
=== Экономические агенты (люди) ===
 
Экономические агенты моделируют индивидуальных участников экономики, принимающих решения о перемещении в пространстве, сборе ресурсов и потреблении. Каждый агент характеризуется следующим набором параметров:
 
* <math>m_i</math> — метаболизм, то есть количество зерна, потребляемое агентом за один такт моделирования;
* <math>v_i</math> — видимость, определяющая радиус поиска ресурсов в пространстве;
* <math>L_i</math> — продолжительность жизни, случайная величина, задаваемая при рождении;
* <math>W_i</math> — богатство агента, измеряемое как накопленный запас зерна.
 
Параметры <math>m_i</math>, <math>v_i</math> и <math>L_i</math> задаются при создании агента и остаются неизменными на протяжении его жизненного цикла, что позволяет трактовать их как экзогенные характеристики. Богатство <math>W_i</math> и возраст агента являются эндогенными переменными и изменяются в процессе симуляции в зависимости от доходов, потребления и условий выживания.
 
Такое формальное описание агентов создаёт основу для анализа того, каким образом гетерогенность индивидуальных характеристик и конкуренция за ограниченные ресурсы приводят к формированию устойчивого неравенства в распределении богатства на макроуровне.


== Динамика модели ==
== Динамика модели ==
; Движение агентов:
На каждом такте агент <math>i</math> перемещается в незанятую клетку в пределах своего зрения, где количество зерна <math>G_j</math> максимально:


Динамика модели ''Wealth Distribution'' описывает общий принцип эволюции экономической системы во времени и связывает индивидуальное поведение агентов с агрегированными характеристиками распределения богатства. Модель развивается в дискретном времени и представляет собой последовательность повторяющихся тактов, в рамках которых агенты и среда взаимодействуют по заданным локальным правилам.
<math>G_j = \max_{k \in V_i} G_k</math>


На каждом такте экономические агенты перемещаются в пространстве, собирают доступные ресурсы, потребляют их в соответствии с индивидуальными параметрами и проходят демографические процессы. Среда, в свою очередь, восстанавливает ресурс, обеспечивая долгосрочную воспроизводимость системы. Совокупный эффект этих микроуровневых процессов проявляется в макроуровневой динамике распределения богатства и показателей неравенства.
где <math>V_i</math> - множество видимых клеток для [[агент]]а <math>i</math>.


Подробное пошаговое описание алгоритма одного такта моделирования и всех входящих в него процессов приводится ниже, в расширенном разделе, посвящённом динамике модели.
; Потребление и накопление:
После перемещения агент собирает все зерно и потребляет согласно метаболизму:
<math>W_i(t+1) = W_i(t) + G_j - m_i</math>


== Коэффициент Джини + Кривая Лоренца ==
; Смерть и рождение:
Агент умирает, если <math>W_i = 0</math> или возраст превышает <math>L_i</math>. При смерти создается новый агент с:
* Случайным метаболизмом из диапазона <math>[m_{min}, m_{max}]</math>
* Случайным богатством <math>W_{new} \sim U(W_{min}, W_{max})</math>, где <math>W_{min}</math> и <math>W_{max}</math> - богатство самого бедного и богатого агента
* Отсутствием наследования богатства


Для количественной оценки экономического неравенства, возникающего в агентно-ориентированной модели ''Wealth Distribution'', используются классические статистические показатели — коэффициент Джини и кривая Лоренца. Эти инструменты широко применяются в экономике и социальной статистике для анализа распределения доходов и богатства и позволяют напрямую сопоставлять результаты моделирования с эмпирическими данными.
=== [[Коэффициент Джини]] + [[Кривая Лоренца]] ===


Коэффициент Джини представляет собой численную меру степени неравенства распределения богатства и принимает значения от 0 до 1. Значение, близкое к нулю, соответствует почти полному равенству, тогда как значения, приближающиеся к единице, указывают на высокую концентрацию богатства у небольшой доли агентов.
{{#ask: [[Коэффициент Джини]] | ?Description }}


Формально коэффициент Джини может быть вычислен через кривую Лоренца как отношение площадей:
{{#ask: [[Кривая Лоренца]] | ?Description }}


<math>
[[Коэффициент Джини]] <math>G</math> - численная мера неравенства, рассчитываемая как отношение площадей:
G = \frac{A}{A + B}
</math>


где <math>A</math> — площадь между линией абсолютного равенства и кривой Лоренца, а <math>B</math> — площадь под кривой Лоренца. Поскольку <math>A + B = 0.5</math>, выражение упрощается до:
<math>G = \frac{A}{A + B}</math>


<math>
где:
G = 2A = 1 - 2B
* <math>A</math> - площадь между линией равенства и кривой Лоренца
</math>
* <math>B</math> - площадь под кривой Лоренца


Для дискретного распределения богатства между <math>n</math> агентами коэффициент Джини рассчитывается по формуле:
Поскольку <math>A + B = 0.5</math>, формула упрощается до:


<math>
<math>G = 2A = 1 - 2B</math>
G = \frac{2 \sum_{i=1}^{n} i \cdot W_i}{n \sum_{i=1}^{n} W_i} - \frac{n + 1}{n}
</math>


где <math>W_i</math> — богатство <math>i</math>-го агента, упорядоченное по возрастанию.
Для дискретного распределения богатства:


Кривая Лоренца представляет собой графическое отображение функции распределения богатства, в которой по оси абсцисс откладывается кумулятивная доля населения, а по оси ординат — кумулятивная доля богатства. Чем сильнее кривая отклоняется от диагонали единичного квадрата, тем выше уровень неравенства.
<math>G = \frac{2\sum_{i=1}^{n} i \cdot W_i}{n \sum_{i=1}^{n} W_i} - \frac{n+1}{n}</math>


В рамках модели показатели коэффициента Джини и кривой Лоренца пересчитываются на каждом такте симуляции на основе текущего распределения богатства между агентами. Это позволяет анализировать динамику неравенства во времени и оценивать устойчивость сформировавшегося распределения.
где <math>W_i</math> - богатство <math>i</math>-го агента в порядке возрастания


=== Сбор ресурса, потребление и накопление ===
Интерпретация коэффициента Джини:
* <math>G = 0</math> - абсолютное равенство
* <math>G = 1</math> - абсолютное неравенство (один агент владеет всем богатством)


После перемещения агент собирает весь доступный на выбранной клетке ресурс. Собранное зерно увеличивает запас богатства агента, после чего осуществляется потребление в соответствии с индивидуальным метаболизмом. Таким образом, изменение богатства агента на каждом такте моделирования определяется балансом между поступлением ресурса и обязательными расходами на выживание.
==== Wealth_Distribution ====


Динамика богатства агента <math>i</math> описывается следующим уравнением:
<netlogo model="Wealth_Distribution_1" />


<math>
====== Пояснения к коду ======
W_i(t+1) = W_i(t) + G_j - m_i
</math>


где <math>W_i(t)</math> — запас богатства агента в момент времени <math>t</math>, <math>G_j</math> — количество зерна, собранного на выбранной клетке <math>j</math>, а <math>m_i</math> — индивидуальный метаболизм агента, отражающий уровень потребления за один такт.
; Глобальные переменные
<syntaxhighlight lang="logos" line>
globals [
  max-grain              ; максимальное количество зерна на одной клетке
  gini-index-reserve    ; переменная для накопления коэффициента Джини
  lorenz-points          ; список точек для построения кривой Лоренца
]
</syntaxhighlight>


Данное уравнение представляет собой базовое уравнение накопления, лежащее в основе всей последующей динамики модели и используемое при формировании системы эконометрических уравнений.
; Патчи
<syntaxhighlight lang="logos" line>
patches-own [
  grain-here          ; текущее количество зерна на этой клетке
  max-grain-here      ; максимальное количество, которое может вместить клетка — потенциальный максимум, зависит от типа земли (хорошая и плохая земля)
]
</syntaxhighlight>


=== Старение, смерть и рождение ===
; Черепахи
<syntaxhighlight lang="logos" line>
turtles-own [
  age                ; возраст агента (в тиках)
  wealth            ; запас зерна, который агент накопил
  life-expectancy    ; максимальный возраст (когда умрёт)
  metabolism        ; сколько зерна потребляет за один тик
  vision            ; сколько клеток вперёд может видеть (радиус поиска)
]
</syntaxhighlight>


Экономические агенты в модели ''Wealth Distribution'' обладают конечной продолжительностью жизни и подвержены процессам старения, выбывания и замещения. Возраст агента увеличивается на каждом такте моделирования, что отражает дискретную временную структуру модели и позволяет учитывать демографическую динамику в долгосрочной эволюции системы.
===== Setup =====


Агент выбывает из модели при выполнении одного из двух условий: если его запас богатства становится неположительным либо если возраст превышает индивидуально заданную продолжительность жизни <math>L_i</math>. Тем самым условия выживания напрямую связывают демографические процессы с экономическим состоянием агента.
<syntaxhighlight lang="logos" line>
  setup-patches      ; инициализация земли
  setup-turtles      ; инициализация агентов
  update-lorenz-and-gini  ; расчёт начальных значений неравенства
</syntaxhighlight>


Формально условие выживания агента <math>i</math> в момент времени <math>t</math> может быть записано следующим образом:


<math>
Зерно распространяется (диффузионный процесс). Это моделирует «географическую близость» богатства:
\text{Alive}_i(t) =
<math>\displaystyle{\text{grain}_{new} = 0.75 \times \text{grain}_{old} + 0.25 \times \text{avg(grain neighbors)}}</math>
\begin{cases}
1, & \text{если } W_i(t) > 0 \text{ и } \text{Age}_i(t) < L_i, \\
0, & \text{иначе}.
\end{cases}
</math>


Если <math>\text{Alive}_i(t)=0</math>, агент немедленно удаляется из модели. Для поддержания постоянной численности населения на его месте создаётся новый агент. Параметры нового агента (метаболизм, видимость и продолжительность жизни) задаются экзогенно и выбираются случайным образом из заданных распределений.
<syntaxhighlight lang="logos" line>
  repeat 5  [ ask patches with [max-grain-here != 0]
              [ set grain-here max-grain-here ]
            diffuse grain-here 0.25 ]
  repeat 10 [ diffuse grain-here 0.25 ]
</syntaxhighlight>


Начальный уровень богатства нового агента определяется как случайная величина, зависящая от текущего распределения богатства в экономике:
Образуются кластеры богатых и бедных участков земли, как в реальной географии.


<math>
======  Эконометрическая интерпретация: ======
W_{\text{new}} \sim U\bigl(W_{\min}(t), W_{\max}(t)\bigr),
* Создание экзогенного пространственного неравенства в ресурсах.
</math>
* Это играет роль [[инструментальная переменная|инструментальной переменной]] при анализе факторов неравенства.


где <math>W_{\min}(t)</math> и <math>W_{\max}(t)</math> — соответственно минимальное и максимальное значения богатства среди живых агентов в момент времени <math>t</math>.
; Черепахи
<syntaxhighlight lang="logos" line>
to set-initial-turtle-vars
  set life-expectancy life-expectancy-min +
                      random (life-expectancy-max - life-expectancy-min + 1)
  set metabolism 1 + random metabolism-max
  set wealth metabolism + random 50
  set vision 1 + random max-vision
  set age random life-expectancy
end
</syntaxhighlight>


Таким образом, в модели отсутствует прямое межпоколенческое наследование богатства, однако агрегированное распределение ресурсов эндогенно влияет на начальные условия новых агентов. Данный механизм формирует обратную связь между макроуровневой структурой неравенства и микроуровнем индивидуальных экономических траекторий.
# [[Экзогенная переменная|Экзогенные переменные]] (metabolism, vision, life-expectancy) назначаются один раз при создании или перерождении.
# [[Эндогенная переменная|Эндогенные переменные]] (wealth, age) меняются каждый тик согласно динамическому процессу.


=== Восстановление ресурсов ===
; Go
<syntaxhighlight lang="logos" line>
to go
  ask turtles [ turn-towards-grain ]    ; шаг 1: выбор направления
  harvest                              ; шаг 2: сбор урожая
  ask turtles [ move-eat-age-die ]      ; шаг 3: движение, еда, старение, смерть
  recolor-turtles                      ; визуализация
 
  if ticks mod grain-growth-interval = 0
    [ ask patches [ grow-grain ] ]      ; шаг 4: восстановление зерна
 
  update-lorenz-and-gini                ; шаг 5: обновление статистики
  tick
end
</syntaxhighlight>


Ресурсная среда в модели ''Wealth Distribution'' является возобновляемой. Каждый участок среды восстанавливает запас зерна по заданному правилу, что обеспечивает долгосрочную воспроизводимость экономической системы и предотвращает полное истощение ресурсов.
==== Возможности модели ====


Формально процесс восстановления задаётся следующим образом: на каждом такте моделирования запас зерна на участке увеличивается на одну единицу до достижения максимальной ёмкости <math>C_i</math>, если участок не был полностью исчерпан в предыдущем такте. Таким образом, динамика ресурса описывается простым детерминированным правилом роста с верхним ограничением.
Модель Wealth Distribution (распределение богатства)  показывает, что даже в полностью справедливом обществе, где все агенты начинают с одинаковыми возможностями, неравенство возникает естественным образом.


Наличие восстановления ресурсов играет ключевую роль в устойчивости модели. С одной стороны, оно поддерживает непрерывную конкуренцию агентов за ограниченные блага, а с другой — позволяет исследовать долгосрочную динамику распределения богатства без тривиального коллапса системы вследствие истощения среды.
Эта модель идеально подходит для понимания [[Система эконометрических уравнений|систем эконометрических уравнений]], потому что здесь мы видим:
* Микро-уровень: Каждый агент следует простым правилам
* Макро-уровень: Взаимодействие миллионов решений создаёт [[закон Парето]]
* Математическое описание: Система уравнений, которая объясняет, почему возникает именно такое распределение


=== Измерение неравенства ===
==== Система эконометрических уравнений ====


После выполнения всех действий текущего такта моделирования в модели пересчитываются показатели экономического неравенства на основе актуального распределения богатства между агентами. Измерение неравенства осуществляется с использованием коэффициента Джини и кривой Лоренца, которые служат агрегированными макроэкономическими индикаторами состояния системы.


Расчёт показателей производится на каждом такте симуляции, что позволяет анализировать не только уровень неравенства, но и его динамику во времени. Это даёт возможность выявлять устойчивые режимы распределения богатства, а также отслеживать переходные процессы, возникающие в результате демографических изменений, перераспределения ресурсов и случайных шоков.
====== Уровень 1: Один агент, одно простое уравнение ======


Таким образом, процедура измерения неравенства замыкает один полный цикл моделирования, связывая микроуровневые действия агентов с макроуровневыми характеристиками социально-экономической структуры.
Представьте одного человека на острове. Каждый день он:
# Ищет зерно
# Его съедает
# Любое оставшееся зерно хранит


=== Экономические агенты (люди) ===
<math>\displaystyle{W_i(t+1) = W_i(t) + G_j - m_i}</math>


Экономические агенты в модели ''Wealth Distribution'' представляют индивидуальных участников экономики, принимающих решения о перемещении в пространстве, сборе ресурсов и потреблении. Поведение агентов определяется простыми локальными правилами, однако их совокупное взаимодействие приводит к формированию сложных макроэкономических эффектов.
где:
- <math>\displaystyle{W_i(t)}</math> — богатство агента в момент времени $t$
- <math>\displaystyle{G_j}</math> — количество зерна, найденного в этом периоде
- <math>\displaystyle{m_i}</math> — метаболизм (сколько зерна он потребляет в день)


Каждый агент характеризуется следующим набором параметров:
; Богатство завтра = Богатство сегодня + Доход - Расходы


* <math>m_i</math> — метаболизм, то есть количество зерна, потребляемое агентом за один такт моделирования;
====== Уровень 1: Два агента, две переменные появляется взаимозависимость ======
* <math>v_i</math> — видимость, определяющая радиус поиска ресурсов в пространстве;
* <math>L_i</math> продолжительность жизни, случайная величина, задаваемая при рождении;
* <math>W_i</math> — богатство агента, измеряемое как накопленный запас зерна.


Параметры метаболизма, видимости и продолжительности жизни задаются при создании агента и остаются неизменными на протяжении его жизненного цикла, что позволяет трактовать их как экзогенные характеристики. Богатство <math>W_i</math> и возраст агента, напротив, являются эндогенными переменными и изменяются в процессе симуляции в зависимости от доходов, потребления и условий выживания.
Теперь представьте двух людей на острове с ограниченным зерном.


Такое формальное описание экономических агентов обеспечивает возможность анализа того, каким образом гетерогенность индивидуальных характеристик и конкуренция за ограниченные ресурсы приводят к устойчивому неравенству в распределении богатства на макроуровне.
; Агент 1:
<math>\displaystyle{W_1(t+1) = W_1(t) + G_1(t) - m_1}</math>
; Агент 2:
<math>\displaystyle{W_2(t+1) = W_2(t) + G_2(t) - m_2}</math>


== Основные агенты и их свойства (краткое напоминание) ==
Ограничение: Всего зерна на острове конечно. Если агент 1 хорошо видит и быстро бегает, он соберёт больше зерна — и агент 2 останется ни с чем.


В данной модели используются два типа агентов участки среды и экономические агенты. Их формальные характеристики и параметры были подробно описаны выше. В дальнейшем основное внимание уделяется не перечню свойств агентов, а анализу их взаимодействия и роли в формировании динамики распределения богатства.
: <math>\displaystyle{G_1(t) + G_2(t) = G_{total}(t)}</math>
: где <math>\displaystyle{G_{total}(t)}</math> общее количество доступного зерна.


== Основные агенты и их свойства (резюме) ==


Для удобства анализа ниже приведено краткое резюме ключевых элементов модели:


* участки среды (''patches'') — пространственные элементы, содержащие возобновляемый ресурс (зерно) с ограниченной ёмкостью;
Микро-уровень (поведение каждого агента):
* экономические агенты — индивидуальные участники, обладающие фиксированными параметрами метаболизма, видимости и продолжительности жизни;
* богатство агента — эндогенная переменная, формируемая в результате сбора ресурса, потребления и демографической динамики.


Подробное описание механизмов поведения агентов и среды приводится в соответствующих разделах, посвящённых динамике модели и системе уравнений.
Агент движется в направлении максимального зерна в пределах его видимости:


== Динамика модели ==
<math>\displaystyle{G_i(t) = \max_{j \in V_i} G_j(t)}</math>


Динамика агентно-ориентированной модели Wealth Distribution описывает последовательность микроуровневых действий экономических агентов и среды, выполняемых на каждом такте моделирования. Именно эта динамика связывает индивидуальные решения агентов с макроуровневой эволюцией распределения богатства.
где
<math>\displaystyle{V_i}</math> — множество клеток, которые агент может видеть.


Каждый такт моделирования представляет собой дискретный временной шаг, в рамках которого агенты взаимодействуют с пространственной средой, конкурируют за ограниченные ресурсы и проходят жизненный цикл. Все процессы происходят по заранее заданным локальным правилам и не предполагают централизованного управления или внешнего перераспределения.
Это система одновременных уравнений:
* Местоположение агента 1 влияет на то, сколько зерна он найдёт → влияет на его богатство
* Местоположение агента 2 влияет на то, сколько зерна остаётся для агента 1
* Богатство влияет на выживание → влияет на следующее поколение агентов
* Новые агенты имеют случайное начальное богатство → влияет на конкуренцию


Последовательность действий в одном такте включает следующие этапы:
Полная система эконометрических уравнений для Wealth Distribution


* **Перемещение агентов.**
=====  Уровень 1. Уравнение богатства (накопление и потребление) =====
  Каждый агент анализирует окружающее пространство в пределах своей индивидуальной видимости и выбирает направление движения в сторону наиболее ресурсно насыщенного участка, если он не занят другим агентом.


* **Сбор ресурса и накопление.**
<math>\displaystyle{W_i(t+1) = W_i(t) + Y_i(t) - C_i(t)}</math>
  После перемещения агент полностью собирает доступный ресурс на выбранном участке, увеличивая свой запас богатства.
; где:
* <math>\displaystyle{W_i(t)}</math> — богатство агента в периоде $t$
* <math>\displaystyle{Y_i(t)}</math> — доход (собранное зерно)
* <math>\displaystyle{C_i(t)}</math> — потребление (метаболизм)


* **Потребление ресурса.**
===== Уровень 2: Уравнение дохода (зависит от видимости и везения) =====
  Агент потребляет фиксированное количество ресурса в соответствии со своим метаболизмом, что отражает неизбежные издержки на поддержание жизнедеятельности.


* **Старение и демографическая динамика.**
Агент может собрать зерно только из видимых ему клеток. Но на самом деле:
  Возраст агента увеличивается на каждом такте. Агент выбывает из модели при исчерпании запаса богатства или при достижении максимальной продолжительности жизни. На его месте создаётся новый агент с случайно заданными характеристиками.


* **Восстановление ресурсов среды.**
<math>\displaystyle{Y_i(t) = f(v_i, \text{удача}_t) + u_{1,i}(t)}</math>
  Участки пространства восстанавливают запас ресурса по заданному правилу роста, что обеспечивает воспроизводимость системы и долгосрочную динамику.


* **Расчёт агрегированных показателей.**
где:
  После завершения всех микроуровневых действий вычисляются показатели экономического неравенства на основе текущего распределения богатства между агентами.
* <math>\displaystyle{v_i}</math> — видимость (радиус поиска)
* <math>\displaystyle{\text{удача}_t}</math> — случайная величина (встретил ли плотные участки зерна)
* <math>\displaystyle{u_{1,i}(t)}</math> — случайная ошибка


Такое пошаговое описание динамики позволяет проследить, каким образом простые индивидуальные правила поведения и пространственные ограничения среды приводят к формированию устойчивых макроэкономических закономерностей, включая концентрацию богатства и рост неравенства, без введения внешних институциональных факторов.
В упрощённом виде:
; <math>\displaystyle{Y_i(t) = a + b \cdot v_i + \varepsilon_{1,i}(t)}</math>
; То есть: Чем больше видимость, тем больше среднего доход.


== Система уравнений в общем виде ==
=====  Уровень 3: Уравнение потребления (метаболизм — врожденное свойство) =====  


Для формального анализа агентно-ориентированной модели ''Wealth Distribution'' поведение агентов и эволюция распределения богатства могут быть представлены в виде системы взаимосвязанных уравнений. Такая запись позволяет перейти от алгоритмического описания модели к эконометрической интерпретации и анализу эндогенных и экзогенных факторов неравенства.
Метаболизм — это просто постоянная, которая не меняется:


Модель описывается системой одновременных уравнений, в которой индивидуальные переменные агентов зависят как от их собственных характеристик, так и от агрегированного состояния экономики.
<math>\displaystyle{C_i(t) = m_i}</math>


В общем виде система может быть представлена следующим образом.
где <math>\displaystyle{m_i}</math> — метаболизм агента (задан при рождении).


=== Уравнение накопления богатства ===
===== Уровень 4: Условие выживания (условие смерти/рождения) =====  


Центральным элементом формализации модели ''Wealth Distribution'' является уравнение накопления богатства, описывающее межвременную динамику индивидуальных ресурсов экономических агентов. Данное уравнение отражает балансовую логику модели и связывает текущее состояние агента с результатами его экономической активности за один такт моделирования.
Агент умирает, если его богатство падает ниже нуля:


Динамика богатства агента <math>i</math> задаётся следующим уравнением:
<math>\displaystyle{\text{Живой}_i(t) = \begin{cases} 1, & \text{если } W_i(t) > 0 \text{ и } \text{Возраст}_i < L_i \\ 0, & \text{иначе} \end{cases}}</math>


<math>
При смерти рождается новый агент с начальным богатством, выбранным из распределения реально существующих богатств:
W_i(t+1) = W_i(t) + Y_i(t) - C_i(t)
</math>


где 
<math>\displaystyle{W_{new}(t) \sim \text{Uniform}(W_{min}(t), W_{max}(t))}</math>
<math>W_i(t)</math> — запас богатства агента в момент времени <math>t</math>, 
<math>Y_i(t)</math> — доход агента за период <math>t</math>, интерпретируемый как объём собранного ресурса, 
<math>C_i(t)</math> — потребление агента за период <math>t</math>.


В рамках модели потребление задаётся экзогенно и определяется индивидуальным метаболизмом агента, тогда как доход формируется эндогенно в результате взаимодействия агента с пространственной средой и зависит от его характеристик и случайных факторов. Таким образом, уравнение накопления богатства представляет собой базовое структурное уравнение, лежащее в основе всей последующей динамики распределения богатства и ... используемое при переходе к приведённой форме системы уравнений.
Это создаёт [[эндогенность]]: Распределение богатства в периоде $t$ определяет начальные условия для периода $t+1$.


=== Уравнение дохода ===
=== Почему это система одновременных уравнений? ===
# Доход Y зависит от видимости v
# Видимость v... ПОСТОЯННА (не зависит ни от чего)
# Богатство W = W_прошлое + Y - C
# Если W < 0, агент умирает
# Новый агент появляется с W_new из диапазона [min(W), max(W)]
# Но этот диапазон зависит от распределения всех W в обществе
# Которое зависит от того, кто выжил, кто умер
# Что зависит от шага 4
# Что зависит от шага 3...


Доход экономического агента в модели ''Wealth Distribution'' формируется в результате его взаимодействия с пространственной средой и отражает объём ресурса, собранного агентом за один такт моделирования. В отличие от потребления, доход является эндогенной величиной и зависит как от индивидуальных характеристик агента, так и от случайных факторов, связанных с пространственным распределением ресурсов.
;В классической эконометрической терминологии см. [[Система эконометрических уравнений]]:
: Экзогенные переменные (даны извне):
# Видимость <math>\displaystyle{v_i}</math> каждого агента (задана при рождении)
# Метаболизм <math>\displaystyle{m_i}</math> (задан при рождении)
# Общее количество зерна в экономике <math>\displaystyle{G_{total}}</math>
# Случайное везение <math>\displaystyle{\varepsilon_t}</math>


В общем виде доход агента <math>i</math> может быть представлен как функция его видимости и стохастических условий среды:


<math>
== Система уравнений в общем виде ==
Y_i(t) = f(v_i, \varepsilon_i(t))
</math>


где <math>v_i</math> — видимость агента, определяющая радиус поиска ресурсов, 
[[Система эконометрических уравнений]] для [[Wealth Distribution]] в стандартной форме.
а <math>\varepsilon_i(t)</math> — случайный компонент, отражающий неопределённость, связанную с расположением ресурсов и конкуренцией с другими агентами.


Для целей эконометрического анализа функция дохода аппроксимируется линейной формой:
=== Структурная форма системы ===


<math>
<math>\displaystyle{\begin{cases}
Y_i(t) = \gamma_0 + \gamma_1 v_i + u_i(t)
W_i(t+1) = \beta_0 + \beta_1 W_i(t) + \beta_2 Y_i(t) + \beta_3 m_i + u_{1,i}(t) \\
</math>
Y_i(t) = \gamma_0 + \gamma_1 v_i + u_{2,i}(t) \\
\text{Выжил}_i(t) = \delta_0 + \delta_1 W_i(t) + \delta_2 \text{Возраст}_i(t) + u_{3,i}(t) \\
G(t) = f(W_1(t), W_2(t), \ldots, W_n(t))
\end{cases}}</math>


где <math>\gamma_0</math> — базовый уровень дохода, 
; Интерпретация коэффициентов:
<math>\gamma_1</math> — параметр, отражающий вклад видимости агента в формирование дохода, 
- <math>\displaystyle{\beta_0 = 0}</math> (нет начального богатства из ниоткуда)
<math>u_i(t)</math> — стохастическая ошибка, аккумулирующая влияние не наблюдаемых факторов.
- <math>\displaystyle{\beta_1 = 1}</math> (богатство сохраняется)
- <math>\displaystyle{\beta_2 = 1}</math> (весь доход добавляется к богатству)
- <math>\displaystyle{\beta_3 = -1}</math> (весь метаболизм вычитается)
- <math>\displaystyle{\gamma_1 > 0}</math> (чем больше видимость, тем больше доход)
- <math>\displaystyle{\delta_1 > 0}</math> (чем больше богатство, тем больше вероятность выжить)


Предполагается, что коэффициент <math>\gamma_1</math> положителен, что соответствует интуиции модели: агенты с большей видимостью имеют доступ к более широкой области поиска ресурсов и, в среднем, получают больший доход.
=== Приведённая форма системы ===


=== Уравнение потребления ===
<math>\displaystyle{W_i(t) = \sum_{j=0}^{t-1} [Y_i(t-j) - m_i] = \sum_{j=0}^{t-1} [\gamma_0 + \gamma_1 v_i + u_{2,i}(t-j) - m_i]}</math>


Потребление экономического агента в модели ''Wealth Distribution'' задаётся экзогенно и отражает неизбежные издержки на поддержание жизнедеятельности. В отличие от дохода, потребление не является результатом оптимизационного выбора и не зависит от текущего уровня богатства агента.
; Упрощённо:
<math>\displaystyle{W_i(t) = t \cdot (\gamma_0 + \gamma_1 v_i - m_i) + \sum_{j=0}^{t-1} u_{2,i}(t-j)}</math>


В формализованном виде потребление агента <math>i</math> определяется следующим образом:
; Интерпретация:
* Если <math>\displaystyle{\gamma_1 v_i > m_i}</math> (доход больше расходов), богатство растёт линейно со временем
* Если <math>\displaystyle{\gamma_1 v_i < m_i}</math> (расходы больше дохода), агент разоряется
*  Случайные ошибки накапливаются, создавая то, что видится как везение


<math>
C_i(t) = m_i
</math>
где <math>m_i</math> — индивидуальный метаболизм агента, заданный при его создании и остающийся неизменным на протяжении всего жизненного цикла.
Такое задание потребления соответствует предположению о фиксированных обязательных расходах и позволяет сосредоточить анализ модели на эндогенной динамике доходов и накопления богатства, исключая эффекты адаптивного или стратегического потребления.
=== Условие выживания и демографическая динамика ===
В модели ''Wealth Distribution'' демографическая динамика агентов определяется простыми, но жёсткими условиями выживания, связывающими индивидуальное богатство и возраст с вероятностью продолжения жизненного цикла. Такое задание демографии позволяет эндогенно формировать состав популяции без введения внешних демографических процессов.
Агент <math>i</math> продолжает существовать в модели в момент времени <math>t</math>, если одновременно выполняются два условия: запас его богатства остаётся положительным, а возраст не превышает индивидуально заданную продолжительность жизни <math>L_i</math>. Формально условие выживания может быть записано следующим образом:
<math>
\text{Alive}_i(t) =
\begin{cases}
1, & \text{если } W_i(t) > 0 \ \text{и} \ \text{Age}_i(t) < L_i, \\
0, & \text{иначе}.
\end{cases}
</math>
При выполнении условия <math>\text{Alive}_i(t)=0</math> агент выбывает из модели. Для поддержания постоянной численности населения на его месте немедленно создаётся новый агент с экзогенно заданными характеристиками. Начальный уровень богатства нового агента определяется как случайная величина, зависящая от текущего распределения богатства в экономике:
<math>
W_{\text{new}} \sim U\bigl(W_{\min}(t),\, W_{\max}(t)\bigr),
</math>
где <math>W_{\min}(t)</math> и <math>W_{\max}(t)</math> — соответственно минимальное и максимальное значения богатства среди живых агентов в момент времени <math>t</math>.
Таким образом, хотя прямое наследование богатства в модели отсутствует, агрегированное распределение богатства эндогенно влияет на начальные условия новых агентов. Этот механизм формирует обратную связь между макроуровневой структурой неравенства и микроуровнем индивидуальных траекторий агентов.
=== Эндогенность системы ===
Система уравнений, описывающая модель ''Wealth Distribution'', является эндогенной, поскольку все ключевые переменные формируются внутри модели и взаимно определяют друг друга в процессе динамического взаимодействия агентов и среды. В отличие от моделей с экзогенно заданным распределением доходов или богатства, неравенство в данной системе возникает как результат внутренних механизмов.
Доход агента определяется его индивидуальными характеристиками и стохастическими условиями среды; накопленное богатство зависит от истории доходов и фиксированного уровня потребления; вероятность выживания и демографическая структура популяции зависят от текущего уровня богатства и возраста. В свою очередь, состав популяции и распределение богатства определяют начальные условия для вновь создаваемых агентов.
Таким образом, между уравнениями дохода, накопления богатства и выживания возникает система обратных связей, в которой микроуровневые различия между агентами усиливаются и закрепляются на макроуровне. Эндогенность данной системы является ключевым свойством модели и позволяет интерпретировать наблюдаемое неравенство как структурный результат динамики накопления и демографического отбора, а не как следствие внешних институциональных параметров.


== Причина: Случайное везение и накопление ==
== Причина: Случайное везение и накопление ==


Результаты агентно-ориентированного моделирования в рамках модели ''Wealth Distribution'' демонстрируют, что устойчивое экономическое неравенство может формироваться даже при отсутствии изначальных различий между агентами и без введения каких-либо институциональных механизмов перераспределения. Ключевую роль в этом процессе играет сочетание случайных различий в доходах и механизма накопления богатства во времени.
Агент 1 в период 1: Встретил плотный участок зерна, собрал 20 единиц
 
<math>\displaystyle{W_1(1) = W_0 + 20 - m}</math>
Рассмотрим упрощённый иллюстративный пример. Пусть два агента начинают симуляцию с одинаковым уровнем начального богатства <math>W_0</math> и идентичными параметрами метаболизма. В первом периоде один агент случайно оказывается в более ресурсно насыщенной области среды и собирает больший объём ресурса, тогда как второй агент сталкивается с менее благоприятными условиями. Формально это можно представить следующим образом:
 
<math>
W_1(1) = W_0 + 20 - m,
</math>
 
<math>
W_2(1) = W_0 + 5 - m.
</math>
 
Хотя различие в доходах носит случайный характер, уже после первого такта между агентами возникает разрыв в уровне богатства. В последующих периодах данный разрыв имеет тенденцию к сохранению и усилению. Агент с более высоким запасом богатства обладает большей устойчивостью к неблагоприятным шокам и может дольше перемещаться по пространству в поисках ресурсно насыщенных участков, тогда как агент с меньшим запасом вынужден ориентироваться на краткосрочное выживание.
 
В результате формируется положительная обратная связь между текущим уровнем богатства и будущими возможностями получения дохода, которую можно схематично представить следующим образом:
 
<math>
\text{Больше богатства} \;\rightarrow\;
\text{Больше возможностей для поиска ресурсов} \;\rightarrow\;
\text{Больше дохода} \;\rightarrow\;
\text{Больше богатства}.
</math>


Важно подчеркнуть, что данный механизм не требует предположений о различиях в способностях, предпочтениях или рациональности агентов. Экономическое неравенство возникает эндогенно как результат случайных шоков, закрепляемых через процесс накопления и демографического отбора. Таким образом, модель ''Wealth Distribution'' наглядно иллюстрирует, каким образом даже незначительные случайные преимущества на ранних этапах могут приводить к существенной концентрации богатства в долгосрочной перспективе.
Агент 2 в период 1: Не повезло, нашёл мало, собрал 5 единиц
<math>\displaystyle{W_2(1) = W_0 + 5 - m}</math>


== R - уроки ==
В периоде 2:


Модель ''Wealth Distribution'' может быть использована как основа для практических занятий и учебных исследований с применением языка программирования R. Использование R позволяет анализировать результаты агентно-ориентированного моделирования с помощью стандартных инструментов статистики и эконометрики, а также сопоставлять данные симуляции с эмпирическими распределениями.
Агент 1, который теперь богаче, может дольше искать зерно (у него есть запас для потребления). Агент 2, который беднее, должен искать быстро, иначе не выживет.


В рамках учебных занятий на основе данных, полученных из модели, обучающиеся могут освоить следующие навыки:
Более богатый агент имеет преимущество в поиске. Это создаёт положительную обратную связь:


* импорт и предварительная обработка данных моделирования;
<math>\displaystyle{\text{Больше богатства} \rightarrow \text{Больше времени на поиск} \rightarrow \text{Больше дохода} \rightarrow \text{Больше богатства}}</math>
* визуализация распределения богатства с помощью гистограмм и эмпирических функций распределения;
* построение и анализ кривой Лоренца;
* вычисление коэффициента Джини различными способами и сравнение результатов;
* анализ динамики неравенства во времени;
* интерпретация стохастических различий между индивидуальными траекториями агентов.


Особое внимание может быть уделено сравнению распределений, полученных в результате моделирования, с теоретическими распределениями (равномерным, логнормальным, парето-подобным), а также обсуждению устойчивости результатов при изменении параметров модели.
----


Таким образом, связка агентно-ориентированной модели ''Wealth Distribution'' и инструментов анализа данных в R позволяет объединить вычислительное моделирование, статистический анализ и экономическую интерпретацию в рамках единого учебно-исследовательского процесса.
[[Category:Social_statistic_research]]

Текущая версия от 20:54, 16 января 2026


Описание модели Модель распределения богатства в экономике. Данная модель представляет собой агентную вычислительную модель (Agent-based Model) распределения богатства, основанную на классической работе Эпштейна и Акстелла "Sugarscape". Модель демонстрирует механизм неравенства в распределении богатства, где "богатые становятся богаче, а бедные беднее", что соответствует закону Парето.
Область знаний Социология, Экономика, Обществознание, Статистика
Веб-страница - ссылка на модель
Видео запись
Разработчики
Среды и средства, в которых реализована модель NetLogo
Диаграмма модели
Описание полей данных, которые модель порождает
Модель создана студентами? Нет

Описание

Симуляция распределения богатства, демонстрирующая закон Парето и неравенство доходов.

Ключевые элементы
  • Агенты с различным метаболизмом
  • Ограниченные ресурсы (зерно)
  • Наследование и жизненные циклы
Эконометрическое применение

Расчет коэффициента Джини для измерения неравенства:

[math]\displaystyle{ \text{Gini} = 1 - \sum_{k=0}^{n-1}(X_{k+1} - X_k)(Y_{k+1} + Y_k) }[/math] где X — кумулятивная доля населения, Y — кумулятивная доля богатства.

Основные агенты и их свойства

В модели присутствуют два типа агентов:

Участки земли (patches) - содержат зерно с определенной емкостью роста
  • Каждый участок имеет максимальную емкость зерна [math]\displaystyle{ C_i }[/math]
  • На каждом такте участок восстанавливает одну единицу зерна до максимума
  • Цвет участка отражает количество зерна: чем темнее желтый, тем больше зерна
Люди (agents) - экономические агенты со следующими характеристиками
  • Метаболизм [math]\displaystyle{ m_i }[/math] - количество зерна, потребляемое за один такт (тик)
  • Видимость [math]\displaystyle{ v_i }[/math] - радиус видимости для поиска зерна
  • Продолжительность жизни [math]\displaystyle{ L_i }[/math] - случайная величина от 60 до 100 тактов
  • Богатство [math]\displaystyle{ W_i }[/math] - накопленное количество зерна

Динамика модели

Движение агентов

На каждом такте агент [math]\displaystyle{ i }[/math] перемещается в незанятую клетку в пределах своего зрения, где количество зерна [math]\displaystyle{ G_j }[/math] максимально:

[math]\displaystyle{ G_j = \max_{k \in V_i} G_k }[/math]

где [math]\displaystyle{ V_i }[/math] - множество видимых клеток для агента [math]\displaystyle{ i }[/math].

Потребление и накопление

После перемещения агент собирает все зерно и потребляет согласно метаболизму: [math]\displaystyle{ W_i(t+1) = W_i(t) + G_j - m_i }[/math]

Смерть и рождение

Агент умирает, если [math]\displaystyle{ W_i = 0 }[/math] или возраст превышает [math]\displaystyle{ L_i }[/math]. При смерти создается новый агент с:

  • Случайным метаболизмом из диапазона [math]\displaystyle{ [m_{min}, m_{max}] }[/math]
  • Случайным богатством [math]\displaystyle{ W_{new} \sim U(W_{min}, W_{max}) }[/math], где [math]\displaystyle{ W_{min} }[/math] и [math]\displaystyle{ W_{max} }[/math] - богатство самого бедного и богатого агента
  • Отсутствием наследования богатства
 Description
Коэффициент ДжиниКоэффициент Джини — статистический показатель степени расслоения общества данной страны или региона по какому-либо изучаемому признаку. Используется для оценки экономического неравенства. Коэффициент Джини может варьироваться между 0 и 1. Чем больше его значение отклоняется от нуля и приближается к единице, тем в большей степени доходы сконцентрированы в руках отдельных групп населения.
 Description
Кривая ЛоренцаКривая Лоренца (англ. Lorenz curve) — графическое изображение функции распределения, предложенная американским экономистом Максом Отто Лоренцем в 1905 году как показатель неравенства в доходах населения. Кривая Лоренца представляет функцию распределения, в которой аккумулируются доли численности и доходов населения. В прямоугольной системе координат кривая Лоренца является выпуклой вниз и проходит под диагональю единичного квадрата, расположенного в I координатной четверти.

Коэффициент Джини [math]\displaystyle{ G }[/math] - численная мера неравенства, рассчитываемая как отношение площадей:

[math]\displaystyle{ G = \frac{A}{A + B} }[/math]

где:

  • [math]\displaystyle{ A }[/math] - площадь между линией равенства и кривой Лоренца
  • [math]\displaystyle{ B }[/math] - площадь под кривой Лоренца

Поскольку [math]\displaystyle{ A + B = 0.5 }[/math], формула упрощается до:

[math]\displaystyle{ G = 2A = 1 - 2B }[/math]

Для дискретного распределения богатства:

[math]\displaystyle{ G = \frac{2\sum_{i=1}^{n} i \cdot W_i}{n \sum_{i=1}^{n} W_i} - \frac{n+1}{n} }[/math]

где [math]\displaystyle{ W_i }[/math] - богатство [math]\displaystyle{ i }[/math]-го агента в порядке возрастания

Интерпретация коэффициента Джини:

  • [math]\displaystyle{ G = 0 }[/math] - абсолютное равенство
  • [math]\displaystyle{ G = 1 }[/math] - абсолютное неравенство (один агент владеет всем богатством)

Wealth_Distribution

Пояснения к коду
Глобальные переменные
globals [
  max-grain              ; максимальное количество зерна на одной клетке
  gini-index-reserve     ; переменная для накопления коэффициента Джини
  lorenz-points          ; список точек для построения кривой Лоренца
]
Патчи
patches-own [
  grain-here           ; текущее количество зерна на этой клетке
  max-grain-here       ; максимальное количество, которое может вместить клетка  потенциальный максимум, зависит от типа земли (хорошая и плохая земля)
]
Черепахи
turtles-own [
  age                ; возраст агента (в тиках)
  wealth             ; запас зерна, который агент накопил
  life-expectancy    ; максимальный возраст (когда умрёт)
  metabolism         ; сколько зерна потребляет за один тик
  vision             ; сколько клеток вперёд может видеть (радиус поиска)
]
Setup
  setup-patches       ; инициализация земли
  setup-turtles       ; инициализация агентов
  update-lorenz-and-gini  ; расчёт начальных значений неравенства


Зерно распространяется (диффузионный процесс). Это моделирует «географическую близость» богатства: [math]\displaystyle{ \displaystyle{\text{grain}_{new} = 0.75 \times \text{grain}_{old} + 0.25 \times \text{avg(grain neighbors)}} }[/math]

  repeat 5  [ ask patches with [max-grain-here != 0]
               [ set grain-here max-grain-here ]
             diffuse grain-here 0.25 ]
  repeat 10 [ diffuse grain-here 0.25 ]

Образуются кластеры богатых и бедных участков земли, как в реальной географии.

Эконометрическая интерпретация:
Черепахи
to set-initial-turtle-vars
  set life-expectancy life-expectancy-min + 
                       random (life-expectancy-max - life-expectancy-min + 1)
  set metabolism 1 + random metabolism-max
  set wealth metabolism + random 50
  set vision 1 + random max-vision
  set age random life-expectancy
end
  1. Экзогенные переменные (metabolism, vision, life-expectancy) назначаются один раз при создании или перерождении.
  2. Эндогенные переменные (wealth, age) меняются каждый тик согласно динамическому процессу.
Go
to go
  ask turtles [ turn-towards-grain ]    ; шаг 1: выбор направления
  harvest                               ; шаг 2: сбор урожая
  ask turtles [ move-eat-age-die ]      ; шаг 3: движение, еда, старение, смерть
  recolor-turtles                       ; визуализация
  
  if ticks mod grain-growth-interval = 0
    [ ask patches [ grow-grain ] ]      ; шаг 4: восстановление зерна
  
  update-lorenz-and-gini                ; шаг 5: обновление статистики
  tick
end

Возможности модели

Модель Wealth Distribution (распределение богатства) показывает, что даже в полностью справедливом обществе, где все агенты начинают с одинаковыми возможностями, неравенство возникает естественным образом.

Эта модель идеально подходит для понимания систем эконометрических уравнений, потому что здесь мы видим:

  • Микро-уровень: Каждый агент следует простым правилам
  • Макро-уровень: Взаимодействие миллионов решений создаёт закон Парето
  • Математическое описание: Система уравнений, которая объясняет, почему возникает именно такое распределение

Система эконометрических уравнений

Уровень 1: Один агент, одно простое уравнение

Представьте одного человека на острове. Каждый день он:

  1. Ищет зерно
  2. Его съедает
  3. Любое оставшееся зерно хранит

[math]\displaystyle{ \displaystyle{W_i(t+1) = W_i(t) + G_j - m_i} }[/math]

где: - [math]\displaystyle{ \displaystyle{W_i(t)} }[/math] — богатство агента в момент времени $t$ - [math]\displaystyle{ \displaystyle{G_j} }[/math] — количество зерна, найденного в этом периоде - [math]\displaystyle{ \displaystyle{m_i} }[/math] — метаболизм (сколько зерна он потребляет в день)

Богатство завтра = Богатство сегодня + Доход - Расходы
Уровень 1: Два агента, две переменные — появляется взаимозависимость

Теперь представьте двух людей на острове с ограниченным зерном.

Агент 1

[math]\displaystyle{ \displaystyle{W_1(t+1) = W_1(t) + G_1(t) - m_1} }[/math]

Агент 2

[math]\displaystyle{ \displaystyle{W_2(t+1) = W_2(t) + G_2(t) - m_2} }[/math]

Ограничение: Всего зерна на острове конечно. Если агент 1 хорошо видит и быстро бегает, он соберёт больше зерна — и агент 2 останется ни с чем.

[math]\displaystyle{ \displaystyle{G_1(t) + G_2(t) = G_{total}(t)} }[/math]
где [math]\displaystyle{ \displaystyle{G_{total}(t)} }[/math] — общее количество доступного зерна.


Микро-уровень (поведение каждого агента):

Агент движется в направлении максимального зерна в пределах его видимости:

[math]\displaystyle{ \displaystyle{G_i(t) = \max_{j \in V_i} G_j(t)} }[/math]

где [math]\displaystyle{ \displaystyle{V_i} }[/math] — множество клеток, которые агент может видеть.

Это система одновременных уравнений:

  • Местоположение агента 1 влияет на то, сколько зерна он найдёт → влияет на его богатство
  • Местоположение агента 2 влияет на то, сколько зерна остаётся для агента 1
  • Богатство влияет на выживание → влияет на следующее поколение агентов
  • Новые агенты имеют случайное начальное богатство → влияет на конкуренцию

Полная система эконометрических уравнений для Wealth Distribution

Уровень 1. Уравнение богатства (накопление и потребление)

[math]\displaystyle{ \displaystyle{W_i(t+1) = W_i(t) + Y_i(t) - C_i(t)} }[/math]

где
  • [math]\displaystyle{ \displaystyle{W_i(t)} }[/math] — богатство агента в периоде $t$
  • [math]\displaystyle{ \displaystyle{Y_i(t)} }[/math] — доход (собранное зерно)
  • [math]\displaystyle{ \displaystyle{C_i(t)} }[/math] — потребление (метаболизм)
Уровень 2: Уравнение дохода (зависит от видимости и везения)

Агент может собрать зерно только из видимых ему клеток. Но на самом деле:

[math]\displaystyle{ \displaystyle{Y_i(t) = f(v_i, \text{удача}_t) + u_{1,i}(t)} }[/math]

где:

  • [math]\displaystyle{ \displaystyle{v_i} }[/math] — видимость (радиус поиска)
  • [math]\displaystyle{ \displaystyle{\text{удача}_t} }[/math] — случайная величина (встретил ли плотные участки зерна)
  • [math]\displaystyle{ \displaystyle{u_{1,i}(t)} }[/math] — случайная ошибка

В упрощённом виде:

[math]\displaystyle{ \displaystyle{Y_i(t) = a + b \cdot v_i + \varepsilon_{1,i}(t)} }[/math]
То есть
Чем больше видимость, тем больше среднего доход.
Уровень 3: Уравнение потребления (метаболизм — врожденное свойство)

Метаболизм — это просто постоянная, которая не меняется:

[math]\displaystyle{ \displaystyle{C_i(t) = m_i} }[/math]

где [math]\displaystyle{ \displaystyle{m_i} }[/math] — метаболизм агента (задан при рождении).

Уровень 4: Условие выживания (условие смерти/рождения)

Агент умирает, если его богатство падает ниже нуля:

[math]\displaystyle{ \displaystyle{\text{Живой}_i(t) = \begin{cases} 1, & \text{если } W_i(t) \gt 0 \text{ и } \text{Возраст}_i \lt L_i \\ 0, & \text{иначе} \end{cases}} }[/math]

При смерти рождается новый агент с начальным богатством, выбранным из распределения реально существующих богатств:

[math]\displaystyle{ \displaystyle{W_{new}(t) \sim \text{Uniform}(W_{min}(t), W_{max}(t))} }[/math]

Это создаёт эндогенность: Распределение богатства в периоде $t$ определяет начальные условия для периода $t+1$.

Почему это система одновременных уравнений?

  1. Доход Y зависит от видимости v
  2. Видимость v... ПОСТОЯННА (не зависит ни от чего)
  3. Богатство W = W_прошлое + Y - C
  4. Если W < 0, агент умирает
  5. Новый агент появляется с W_new из диапазона [min(W), max(W)]
  6. Но этот диапазон зависит от распределения всех W в обществе
  7. Которое зависит от того, кто выжил, кто умер
  8. Что зависит от шага 4
  9. Что зависит от шага 3...
В классической эконометрической терминологии см. Система эконометрических уравнений
Экзогенные переменные (даны извне):
  1. Видимость [math]\displaystyle{ \displaystyle{v_i} }[/math] каждого агента (задана при рождении)
  2. Метаболизм [math]\displaystyle{ \displaystyle{m_i} }[/math] (задан при рождении)
  3. Общее количество зерна в экономике [math]\displaystyle{ \displaystyle{G_{total}} }[/math]
  4. Случайное везение [math]\displaystyle{ \displaystyle{\varepsilon_t} }[/math]


Система уравнений в общем виде

Система эконометрических уравнений для Wealth Distribution в стандартной форме.

Структурная форма системы

[math]\displaystyle{ \displaystyle{\begin{cases} W_i(t+1) = \beta_0 + \beta_1 W_i(t) + \beta_2 Y_i(t) + \beta_3 m_i + u_{1,i}(t) \\ Y_i(t) = \gamma_0 + \gamma_1 v_i + u_{2,i}(t) \\ \text{Выжил}_i(t) = \delta_0 + \delta_1 W_i(t) + \delta_2 \text{Возраст}_i(t) + u_{3,i}(t) \\ G(t) = f(W_1(t), W_2(t), \ldots, W_n(t)) \end{cases}} }[/math]

Интерпретация коэффициентов

- [math]\displaystyle{ \displaystyle{\beta_0 = 0} }[/math] (нет начального богатства из ниоткуда) - [math]\displaystyle{ \displaystyle{\beta_1 = 1} }[/math] (богатство сохраняется) - [math]\displaystyle{ \displaystyle{\beta_2 = 1} }[/math] (весь доход добавляется к богатству) - [math]\displaystyle{ \displaystyle{\beta_3 = -1} }[/math] (весь метаболизм вычитается) - [math]\displaystyle{ \displaystyle{\gamma_1 \gt 0} }[/math] (чем больше видимость, тем больше доход) - [math]\displaystyle{ \displaystyle{\delta_1 \gt 0} }[/math] (чем больше богатство, тем больше вероятность выжить)

Приведённая форма системы

[math]\displaystyle{ \displaystyle{W_i(t) = \sum_{j=0}^{t-1} [Y_i(t-j) - m_i] = \sum_{j=0}^{t-1} [\gamma_0 + \gamma_1 v_i + u_{2,i}(t-j) - m_i]} }[/math]

Упрощённо

[math]\displaystyle{ \displaystyle{W_i(t) = t \cdot (\gamma_0 + \gamma_1 v_i - m_i) + \sum_{j=0}^{t-1} u_{2,i}(t-j)} }[/math]

Интерпретация
  • Если [math]\displaystyle{ \displaystyle{\gamma_1 v_i \gt m_i} }[/math] (доход больше расходов), богатство растёт линейно со временем
  • Если [math]\displaystyle{ \displaystyle{\gamma_1 v_i \lt m_i} }[/math] (расходы больше дохода), агент разоряется
  • Случайные ошибки накапливаются, создавая то, что видится как везение


Причина: Случайное везение и накопление

Агент 1 в период 1: Встретил плотный участок зерна, собрал 20 единиц [math]\displaystyle{ \displaystyle{W_1(1) = W_0 + 20 - m} }[/math]

Агент 2 в период 1: Не повезло, нашёл мало, собрал 5 единиц [math]\displaystyle{ \displaystyle{W_2(1) = W_0 + 5 - m} }[/math]

В периоде 2:

Агент 1, который теперь богаче, может дольше искать зерно (у него есть запас для потребления). Агент 2, который беднее, должен искать быстро, иначе не выживет.

Более богатый агент имеет преимущество в поиске. Это создаёт положительную обратную связь:

[math]\displaystyle{ \displaystyle{\text{Больше богатства} \rightarrow \text{Больше времени на поиск} \rightarrow \text{Больше дохода} \rightarrow \text{Больше богатства}} }[/math]