Wealth Distribution: различия между версиями
Patarakin (обсуждение | вклад) |
Patarakin (обсуждение | вклад) |
||
| Строка 80: | Строка 80: | ||
* <math>G = 1</math> - абсолютное неравенство (один агент владеет всем богатством) | * <math>G = 1</math> - абсолютное неравенство (один агент владеет всем богатством) | ||
==== Wealth_Distribution ==== | |||
<netlogo model="Wealth_Distribution" /> | <netlogo model="Wealth_Distribution" /> | ||
---- | |||
Версия от 18:55, 5 сентября 2025
| Описание модели | Модель распределения богатства в экономике. Данная модель представляет собой агентную вычислительную модель (Agent-based Model) распределения богатства, основанную на классической работе Эпштейна и Акстелла "Sugarscape". Модель демонстрирует механизм неравенства в распределении богатства, где "богатые становятся богаче, а бедные беднее", что соответствует закону Парето. |
|---|---|
| Область знаний | Социология, Экономика, Обществознание, Статистика |
| Веб-страница - ссылка на модель | |
| Видео запись | |
| Разработчики | |
| Среды и средства, в которых реализована модель | NetLogo |
| Диаграмма модели | |
| Описание полей данных, которые модель порождает | |
| Модель создана студентами? | Нет |
Описание
Симуляция распределения богатства, демонстрирующая закон Парето и неравенство доходов.
- Ключевые элементы
- Агенты с различным метаболизмом
- Ограниченные ресурсы (зерно)
- Наследование и жизненные циклы
- Эконометрическое применение
Расчет коэффициента Джини для измерения неравенства:
[math]\displaystyle{ \text{Gini} = 1 - \sum_{k=0}^{n-1}(X_{k+1} - X_k)(Y_{k+1} + Y_k) }[/math] где X — кумулятивная доля населения, Y — кумулятивная доля богатства.
Основные агенты и их свойства
В модели присутствуют два типа агентов:
- Участки земли (patches) - содержат зерно с определенной емкостью роста
- Каждый участок имеет максимальную емкость зерна [math]\displaystyle{ C_i }[/math]
- На каждом такте участок восстанавливает одну единицу зерна до максимума
- Цвет участка отражает количество зерна: чем темнее желтый, тем больше зерна
- Люди (agents) - экономические агенты со следующими характеристиками
- Метаболизм [math]\displaystyle{ m_i }[/math] - количество зерна, потребляемое за один такт (тик)
- Видимость [math]\displaystyle{ v_i }[/math] - радиус видимости для поиска зерна
- Продолжительность жизни [math]\displaystyle{ L_i }[/math] - случайная величина от 60 до 100 тактов
- Богатство [math]\displaystyle{ W_i }[/math] - накопленное количество зерна
Динамика модели
- Движение агентов
На каждом такте агент [math]\displaystyle{ i }[/math] перемещается в незанятую клетку в пределах своего зрения, где количество зерна [math]\displaystyle{ G_j }[/math] максимально:
[math]\displaystyle{ G_j = \max_{k \in V_i} G_k }[/math]
где [math]\displaystyle{ V_i }[/math] - множество видимых клеток для агента [math]\displaystyle{ i }[/math].
- Потребление и накопление
После перемещения агент собирает все зерно и потребляет согласно метаболизму: [math]\displaystyle{ W_i(t+1) = W_i(t) + G_j - m_i }[/math]
- Смерть и рождение
Агент умирает, если [math]\displaystyle{ W_i = 0 }[/math] или возраст превышает [math]\displaystyle{ L_i }[/math]. При смерти создается новый агент с:
- Случайным метаболизмом из диапазона [math]\displaystyle{ [m_{min}, m_{max}] }[/math]
- Случайным богатством [math]\displaystyle{ W_{new} \sim U(W_{min}, W_{max}) }[/math], где [math]\displaystyle{ W_{min} }[/math] и [math]\displaystyle{ W_{max} }[/math] - богатство самого бедного и богатого агента
- Отсутствием наследования богатства
| Description | |
|---|---|
| Коэффициент Джини | Коэффициент Джини — статистический показатель степени расслоения общества данной страны или региона по какому-либо изучаемому признаку. Используется для оценки экономического неравенства. Коэффициент Джини может варьироваться между 0 и 1. Чем больше его значение отклоняется от нуля и приближается к единице, тем в большей степени доходы сконцентрированы в руках отдельных групп населения. |
| Description | |
|---|---|
| Кривая Лоренца | Кривая Лоренца (англ. Lorenz curve) — графическое изображение функции распределения, предложенная американским экономистом Максом Отто Лоренцем в 1905 году как показатель неравенства в доходах населения. Кривая Лоренца представляет функцию распределения, в которой аккумулируются доли численности и доходов населения. В прямоугольной системе координат кривая Лоренца является выпуклой вниз и проходит под диагональю единичного квадрата, расположенного в I координатной четверти. |
Коэффициент Джини [math]\displaystyle{ G }[/math] - численная мера неравенства, рассчитываемая как отношение площадей:
[math]\displaystyle{ G = \frac{A}{A + B} }[/math]
где:
- [math]\displaystyle{ A }[/math] - площадь между линией равенства и кривой Лоренца
- [math]\displaystyle{ B }[/math] - площадь под кривой Лоренца
Поскольку [math]\displaystyle{ A + B = 0.5 }[/math], формула упрощается до:
[math]\displaystyle{ G = 2A = 1 - 2B }[/math]
Для дискретного распределения богатства:
[math]\displaystyle{ G = \frac{2\sum_{i=1}^{n} i \cdot W_i}{n \sum_{i=1}^{n} W_i} - \frac{n+1}{n} }[/math]
где [math]\displaystyle{ W_i }[/math] - богатство [math]\displaystyle{ i }[/math]-го агента в порядке возрастания
Интерпретация коэффициента Джини:
- [math]\displaystyle{ G = 0 }[/math] - абсолютное равенство
- [math]\displaystyle{ G = 1 }[/math] - абсолютное неравенство (один агент владеет всем богатством)
