Нейронная сеть
Описание | Нейронная сеть — это метод в искусственном интеллекте, который учит компьютеры обрабатывать данные таким же способом, как и человеческий мозг. Это тип процесса машинного обучения, называемый глубоким обучением, который использует взаимосвязанные узлы или нейроны в слоистой структуре, напоминающей человеческий мозг. Он создает адаптивную систему, с помощью которой компьютеры учатся на своих ошибках и постоянно совершенствуются. Таким образом, искусственные нейронные сети пытаются решать сложные задачи, такие как резюмирование документов или распознавание лиц, с более высокой точностью. Нейросеть или нейронная сеть - искусственные нейронные сети используют некоторую аналогию с работой живых нервных клеток. |
---|---|
Область знаний | Информатика |
Авторы | |
Поясняющее видео | |
Близкие понятия | Синапс, нейрон, мозг человека, нейронная связь, Нейроэволюция, Машинное обучение, K-means |
Среды и средства для освоения понятия | Scratch, Snap!, Python |
Естественная нейронная сеть — это последовательность нейронов, соединенных между собой синапсами. Структура нейронной сети пришла в мир программирования из биологии. Благодаря такой структуре, машина обретает способность анализировать и даже запоминать различную информацию.
Жизненный цикл нейронной сети, как и любой модели машинного обучения, состоит из двух этапов: обучение (training) и применение (inference).
Первая искусственная нейронная сеть появилась в 1954 году она была разработана Белмонтом Фарли и Уэсли Кларком из Массачусетского технологического института. Сеть была ограничена 128 нейронами и позволяла распознавать простые паттерны. В процессе обучения на вход подается вектор признаков, описывающий объект (массив значений), число элементов которого равно числу входных нейронов, на внутренних слоях происходит обработка сигналов, сеть преобразовывает сигнал в выходной слой
Типы нейронный сетей?
Базовый тип нейронных сетей — это сеть прямого распространения - сеть с последовательным соединением нейронных слоев, в ней информация всегда идет только в одном направлении.
Функции активации нейронов
Neurons can have different activation functions.
Three different functions are described here:
Hard limit function
A neuron with a hard limit function
Piecewise linear function
Sigmoid function
A sigmoid function is also called a McCulloch-Pitts Model. can have a variable slope parameter
Самая распространённая функция активации, ее диапазон значений [0,1]. Именно на ней показано большинство примеров в сети, также ее иногда называют логистической функцией.
Для чего нужны нейронные сети?
Нейронные сети используются для решения сложных задач, которые требуют аналитических вычислений подобных тем, что делает человеческий мозг. Самыми распространенными применениями нейронных сетей является:
- Классификация — распределение данных по параметрам. Например, на вход дается набор людей и нужно решить, кому из них давать кредит, а кому нет. Эту работу может сделать нейронная сеть, анализируя такую информацию как: возраст, платежеспособность, кредитная история и тд.
- Предсказание — возможность предсказывать следующий шаг. Например, рост или падение акций, основываясь на ситуации на фондовом рынке.
- Распознавание — в настоящее время, самое широкое применение нейронных сетей. Используется в Google, когда вы ищете фото или в камерах телефонов, когда оно определяет положение вашего лица и выделяет его и многое другое.
Примеры
GA + ANN stands for 'Genetic Algorithm + Artificial Neural Network', as in a way to train a simulated population through a genetic algorithm