Preferential Attachment

Материал из Поле цифровой дидактики
Версия от 11:55, 21 февраля 2024; Patarakin (обсуждение | вклад) (Новая страница: «{{Model |Description=Модель предпочтительного присоединения - Preferential Attachment - Процесс предпочтительного присоединения - это любой из классов процессов, в которых некоторое количество, обычно некоторое форма богатства или кредита распределяется между нескольки...»)
(разн.) ← Предыдущая | Текущая версия (разн.) | Следующая → (разн.)


Описание модели Модель предпочтительного присоединения - Preferential Attachment - Процесс предпочтительного присоединения - это любой из классов процессов, в которых некоторое количество, обычно некоторое форма богатства или кредита распределяется между несколькими людьми или объектами в зависимости от того, сколько они уже имеют, так что те, кто уже богат, получают больше, чем те, кто не богат. «Предпочтительная привязанность» - это лишь последнее из многих названий, которые были даны таким процессам. Они также упоминаются как «богатые становятся богаче»
Область знаний NetSci, Математика, Информатика, Обществознание
Веб-страница - ссылка на модель
Видео запись
Разработчики
Среды и средства, в которых реализована модель NetLogo
Диаграмма модели
Описание полей данных, которые модель порождает
Модель создана студентами? {{{Student-created}}}«{{{Student-created}}}» — не булево значение (да/нет).

https://netlogoweb.org/launch#https://netlogoweb.org/assets/modelslib/Sample%20Models/Networks/Preferential%20Attachment.nlogo


Математика

[math]\displaystyle{ \mathrm{B}(x,y)={\Gamma(x)\Gamma(y)\over\Gamma(x+y)}, }[/math]

with Γ(x) being the standard gamma function, and

[math]\displaystyle{ \gamma=2 + {k_0 + a\over m}. }[/math]

The beta function behaves asymptotically as B(xy) ~ xy for large x and fixed y, which implies that for large values of k we have

[math]\displaystyle{ P(k) \propto k^{-\gamma}. }[/math]