Корреляция: различия между версиями
Patarakin (обсуждение | вклад) Нет описания правки |
Patarakin (обсуждение | вклад) Нет описания правки |
||
| Строка 2: | Строка 2: | ||
|Description=Корреля́ция (от лат. correlatio «соотношение»), или корреляцио́нная зави́симость — статистическая взаимосвязь двух или более случайных величин (либо величин, которые можно с некоторой допустимой степенью точности считать таковыми), при этом изменения значений одной или нескольких из этих величин сопутствуют систематическому изменению значений другой или других величин. | |Description=Корреля́ция (от лат. correlatio «соотношение»), или корреляцио́нная зави́симость — статистическая взаимосвязь двух или более случайных величин (либо величин, которые можно с некоторой допустимой степенью точности считать таковыми), при этом изменения значений одной или нескольких из этих величин сопутствуют систематическому изменению значений другой или других величин. | ||
|Field_of_knowledge=Статистика | |Field_of_knowledge=Статистика | ||
|similar_concepts=эксперимент | |similar_concepts=эксперимент, Коэффициент корреляции | ||
|Environment=NetLogo, BehaviorSpace, CODAP | |Environment=NetLogo, BehaviorSpace, CODAP | ||
}} | }} | ||
Версия от 14:36, 8 июня 2025
| Описание | Корреля́ция (от лат. correlatio «соотношение»), или корреляцио́нная зави́симость — статистическая взаимосвязь двух или более случайных величин (либо величин, которые можно с некоторой допустимой степенью точности считать таковыми), при этом изменения значений одной или нескольких из этих величин сопутствуют систематическому изменению значений другой или других величин. |
|---|---|
| Область знаний | Статистика |
| Авторы | |
| Поясняющее видео | |
| Близкие понятия | Эксперимент, Коэффициент корреляции |
| Среды и средства для освоения понятия | NetLogo, BehaviorSpace, CODAP |
Для графического представления корреляционной связи можно использовать прямоугольную систему координат с осями, которые соответствуют обеим переменным. Каждая пара значений маркируется при помощи определённого символа. Такой график называется диаграммой рассеяния.
Значительная корреляция между двумя случайными величинами всегда является свидетельством существования некоторой статистической связи в данной выборке, но эта связь не обязательно должна наблюдаться для другой выборки и иметь причинно-следственный характер. Часто заманчивая простота корреляционного исследования подталкивает исследователя делать ложные интуитивные выводы о наличии причинно-следственной связи между парами признаков, в то время как коэффициенты корреляции устанавливают лишь статистические взаимосвязи.
