Preferential Attachment: различия между версиями
Материал из Поле цифровой дидактики
Patarakin (обсуждение | вклад) Нет описания правки |
Patarakin (обсуждение | вклад) Нет описания правки |
||
| Строка 18: | Строка 18: | ||
|url=https://netlogoweb.org/launch#https://netlogoweb.org/assets/modelslib/Sample%20Models/Networks/Preferential%20Attachment.nlogo | |url=https://netlogoweb.org/launch#https://netlogoweb.org/assets/modelslib/Sample%20Models/Networks/Preferential%20Attachment.nlogo | ||
|width=800 | |width=800 | ||
|height= | |height=1000 | ||
}} | }} | ||
Версия от 12:02, 21 февраля 2024
| Описание модели | Модель предпочтительного присоединения - Preferential Attachment - Процесс предпочтительного присоединения - это любой из классов процессов, в которых некоторое количество, обычно некоторое форма богатства или кредита распределяется между несколькими людьми или объектами в зависимости от того, сколько они уже имеют, так что те, кто уже богат, получают больше, чем те, кто не богат. «Предпочтительная привязанность» - это лишь последнее из многих названий, которые были даны таким процессам. Они также упоминаются как «богатые становятся богаче» |
|---|---|
| Область знаний | NetSci, Математика, Информатика, Обществознание |
| Веб-страница - ссылка на модель | |
| Видео запись | |
| Разработчики | |
| Среды и средства, в которых реализована модель | NetLogo |
| Диаграмма модели | |
| Описание полей данных, которые модель порождает | |
| Модель создана студентами? | {{{Student-created}}}«{{{Student-created}}}» — не булево значение (да/нет). |
Модель
- Обратите внимание, что мы можем не только управлять рычажками, но и давать команды черепахам
- ask turtles with [count my-links > 20 ] [set label who] - узнаем у кого больше 20 связей
- ask turtle 1 [set label count my-links] - покажи, сколько у тебя связей
- ask turtle 1 [die] - мы можем убить лидера и посмотреть, как измениться сеть
- NetLogo Web
Математика
[math]\displaystyle{ \mathrm{B}(x,y)={\Gamma(x)\Gamma(y)\over\Gamma(x+y)}, }[/math]
with Γ(x) being the standard gamma function, and
[math]\displaystyle{ \gamma=2 + {k_0 + a\over m}. }[/math]
The beta function behaves asymptotically as B(x, y) ~ x−y for large x and fixed y, which implies that for large values of k we have
[math]\displaystyle{ P(k) \propto k^{-\gamma}. }[/math]
