Корреляция: различия между версиями
Patarakin (обсуждение | вклад) Новая страница: «{{Понятие |Description=Корреля́ция (от лат. correlatio «соотношение»), или корреляцио́нная зави́симость — статистическая взаимосвязь двух или более случайных величин (либо величин, которые можно с некоторой допустимой степенью точности считать таковыми), при эт...» |
Patarakin (обсуждение | вклад) Нет описания правки |
||
| (не показано 5 промежуточных версий этого же участника) | |||
| Строка 2: | Строка 2: | ||
|Description=Корреля́ция (от лат. correlatio «соотношение»), или корреляцио́нная зави́симость — статистическая взаимосвязь двух или более случайных величин (либо величин, которые можно с некоторой допустимой степенью точности считать таковыми), при этом изменения значений одной или нескольких из этих величин сопутствуют систематическому изменению значений другой или других величин. | |Description=Корреля́ция (от лат. correlatio «соотношение»), или корреляцио́нная зави́симость — статистическая взаимосвязь двух или более случайных величин (либо величин, которые можно с некоторой допустимой степенью точности считать таковыми), при этом изменения значений одной или нескольких из этих величин сопутствуют систематическому изменению значений другой или других величин. | ||
|Field_of_knowledge=Статистика | |Field_of_knowledge=Статистика | ||
|similar_concepts=эксперимент | |Inventor=Кювье, Гальтон, Любищев | ||
|Environment=NetLogo, BehaviorSpace, CODAP | |similar_concepts=эксперимент, Коэффициент корреляции | ||
|Environment=NetLogo, BehaviorSpace, CODAP, R | |||
}} | }} | ||
Для графического представления корреляционной связи можно использовать прямоугольную систему координат с осями, которые соответствуют обеим переменным. Каждая пара значений маркируется при помощи определённого символа. Такой график называется диаграммой рассеяния. | Для графического представления корреляционной связи можно использовать прямоугольную систему координат с осями, которые соответствуют обеим переменным. Каждая пара значений маркируется при помощи определённого символа. Такой график называется диаграммой рассеяния. | ||
Значительная корреляция между двумя случайными величинами всегда является свидетельством существования некоторой статистической связи в данной выборке, но эта связь не обязательно должна наблюдаться для другой выборки и иметь причинно-следственный характер. Часто заманчивая простота корреляционного исследования подталкивает исследователя делать ложные интуитивные выводы о наличии причинно-следственной связи между парами признаков, в то время как коэффициенты корреляции устанавливают лишь статистические взаимосвязи. | |||
Математической мерой корреляции двух случайных величин служит корреляционное отношение <math>\mathbf{\eta}</math> либо [[коэффициент корреляции]] <math>\mathbf{R}</math> (или <math>\mathbf{r}</math>). В случае если изменение одной случайной величины не ведёт к закономерному изменению другой случайной величины, но приводит к изменению другой статистической характеристики данной случайной величины, то подобная связь не считается корреляционной, хотя и является статистической | |||
Впервые в научный оборот термин корреляция ввёл французский палеонтолог Жорж Кювье в XVIII веке. Он разработал «закон корреляции» частей и органов живых существ, с помощью которого можно восстановить облик ископаемого животного, имея в распоряжении лишь часть его останков. В статистике слово «корреляция» первым стал использовать английский биолог и статистик Фрэнсис Гальтон в конце XIX века. | |||
Текущая версия от 14:49, 8 июня 2025
| Описание | Корреля́ция (от лат. correlatio «соотношение»), или корреляцио́нная зави́симость — статистическая взаимосвязь двух или более случайных величин (либо величин, которые можно с некоторой допустимой степенью точности считать таковыми), при этом изменения значений одной или нескольких из этих величин сопутствуют систематическому изменению значений другой или других величин. |
|---|---|
| Область знаний | Статистика |
| Авторы | Кювье, Гальтон, Любищев |
| Поясняющее видео | |
| Близкие понятия | Эксперимент, Коэффициент корреляции |
| Среды и средства для освоения понятия | NetLogo, BehaviorSpace, CODAP, R |
Для графического представления корреляционной связи можно использовать прямоугольную систему координат с осями, которые соответствуют обеим переменным. Каждая пара значений маркируется при помощи определённого символа. Такой график называется диаграммой рассеяния.
Значительная корреляция между двумя случайными величинами всегда является свидетельством существования некоторой статистической связи в данной выборке, но эта связь не обязательно должна наблюдаться для другой выборки и иметь причинно-следственный характер. Часто заманчивая простота корреляционного исследования подталкивает исследователя делать ложные интуитивные выводы о наличии причинно-следственной связи между парами признаков, в то время как коэффициенты корреляции устанавливают лишь статистические взаимосвязи.
Математической мерой корреляции двух случайных величин служит корреляционное отношение [math]\displaystyle{ \mathbf{\eta} }[/math] либо коэффициент корреляции [math]\displaystyle{ \mathbf{R} }[/math] (или [math]\displaystyle{ \mathbf{r} }[/math]). В случае если изменение одной случайной величины не ведёт к закономерному изменению другой случайной величины, но приводит к изменению другой статистической характеристики данной случайной величины, то подобная связь не считается корреляционной, хотя и является статистической
Впервые в научный оборот термин корреляция ввёл французский палеонтолог Жорж Кювье в XVIII веке. Он разработал «закон корреляции» частей и органов живых существ, с помощью которого можно восстановить облик ископаемого животного, имея в распоряжении лишь часть его останков. В статистике слово «корреляция» первым стал использовать английский биолог и статистик Фрэнсис Гальтон в конце XIX века.
