Анализ и интерпретация данных (syllabus)

Материал из Поле цифровой дидактики

Учебная группа, работающая с курсом Анализ и интерпретация данных в в 202 году Категория:МКО_22

Цель, результаты освоения дисциплины

В результате освоения дисциплины слушатель должен:

Знать
  • особенности типов и источников данных
Уметь
  • планировать процесс обработки, визуализации, анализа и интерпретации данных при помощи UML - Категория:Diagrams
  • использовать сетевые сервисы для экспресс-анализа и интерпретации данных
  • очищать, обрабатывать и видоизменять данные, приводя их к опрятному виду (tidy data)
  • совершать операции статистического анализа
Владеть
  • навыками выстраивания процесс анализа и интерпретации данных от исходных сырых данных до публикации отчета или статьи

Содержание разделов дисциплины:

Источники и типы данных

Источники и типы данных, которые мы извлекаем или порождаем - информационные системы организаций, библиографические системы, сетевые опросы, игры, симуляции, сетевые сообщества

Библиографические данные

Пример работы

Zotero + ACM https://m.youtube.com/watch?v=vNvRVTWYwlw

Библиографический датасет 1

Внешние данные

https://corgis-edu.github.io/corgis/

Данные из игр


Выращивание данных

Starlogo Nova

Проект https://www.slnova.org/patarakin/projects/694467/

Исходное состояние - выбираем параметры

  • количество мячей = 5
  • количество участников = 175
  • рычажок видимости (как близко от участника должен быть мяч, чтобы он начал к нему бежать) = 5

Slnova Data.jpg

Собираем данные со страницы

500 записей

Slnova Data1.jpg

Многое как данные на примере Snap!

Планирование операций над данными

Планирование действий над данными при помощи UML диаграмм

Сетевые сервисы визуализации

Использование быстрых сетевых сервисов анализа и интерпретации данных – RAWGraphs, CODAP, NetBlox. Выбор способов представления данных

Задание с RAWGraphs

Патаракин Е. Д. Выращивание и Анализ Данных в Веб Красноярск
Сибирский федеральный университет, 2021.C. 238–242.
https://elibrary.ru/item.asp?id=46644731
https://www.slnova.org/patarakin/projects/694467/

Обработка, очистка

Обработка, очистка и манипуляции с данными в пакетах R и Python – использование tidyverse & tidygraph

Статистический анализ и интерпретация данных

Основные операции статистического анализа над данными

Экспорт результатов

Подготовка результатов для публикаций, создание выполняемых публикаций и динамических визуализаций

Литература

Основная литература

Дополнительная литература

  1. Патаракин Е.Д., Ярмахов Б.Б. Выращивание данных для школьных виртуальных лабораторий // Вестник Российского Университета Дружбы Народов. Серия: Информатизация Образования. 2021. Vol. 18, № 4. c. 347–359.
  2. Патаракин Е.Д., Вачкова С.Н. Сетевой анализ коллективных действий над цифровыми образовательными объектами // Вестник Московского Городского Педагогического Университета. Серия: Педагогика И Психология. 2019. № 4 (50). c. 101–112.


Видеоматериалы

Критерии оценки по дисциплине

Образовательный результат Тема Задание Пример
Знает особенности типов и источников данных Примеры источников данных Найти, оформить, вырастить данные для дальнейшего анализа В категории статей о датасетах
планировать процесс обработки, визуализации, анализа и интерпретации данных при помощи UML Планирование операций над данными Создать схему цикла работы с данными Пример Category:Diagrams
Умеет использовать сетевые сервисы для экспресс-анализа и интерпретации данных Сетевые сервисы визуализации Использовать экспресс-методы RowGraph, CODAP - примеры использования
Обработать и очистить данные Обработка, очистка Подготовить и видоизменить данные Примеры видоизменения данных в Snap!, R, Python
Операции статистического анализа Статистический анализ и интерпретация данных Операции над собственным датасетом Готовые датасеты
Подготовка выполняемой публикации Экспорт результатов Операции над собственным датасетом Выполняемая публикация