ODD принципы: различия между версиями
Patarakin (обсуждение | вклад) |
Patarakin (обсуждение | вклад) |
||
Строка 91: | Строка 91: | ||
21. Какие результаты и анализ необходимы для проверки модели на соответствие критериям полезности - обычно это набор шаблонов, - определенных в элементе «Цель и паттерны»? Какие результаты необходимы для решения проблемы, для которой была разработана модель? | 21. Какие результаты и анализ необходимы для проверки модели на соответствие критериям полезности - обычно это набор шаблонов, - определенных в элементе «Цель и паттерны»? Какие результаты необходимы для решения проблемы, для которой была разработана модель? | ||
{{#mermaid: | |||
graph TD | |||
A[Overview: General description of the model] --> B[Entities, state variables, scales: Description of the entities in the model and their attributes] | |||
B --> C[Process overview, scheduling: Overview of the processes and scheduling mechanisms] | |||
C --> D[Basic principles: Fundamental principles underlying the model] | |||
D --> E[Emergence: Description of emergent phenomena in the model] | |||
E --> F[Adaptation: How entities adapt and change over time] | |||
F --> G[Objectives: Goals and objectives of the simulation] | |||
G --> H[Learning: Mechanisms for learning and adaptation in the model] | |||
H --> I[Prediction: How predictions are made within the model] | |||
I --> J[Sensing: How entities perceive and sense their environment] | |||
J --> K[Interaction: Description of interactions between entities] | |||
K --> L[Stochasticity: Incorporation of randomness or uncertainty in the model] | |||
L --> M[Collectives: Formation of groups or collectives in the simulation] | |||
M --> N[Observation: Methods for observing and collecting data from the simulation] | |||
N --> O[Initialization: Initialization procedures for setting up the simulation] | |||
}} |
Версия 14:29, 26 марта 2024
Описание | Принципы дизайна исследовательской многоагентной модели. 21 принцип разбит по группам. Например:
|
---|---|
Область знаний | NetSci, Математика, Биология, Информатика |
Авторы | Railsback, Grimm |
Поясняющее видео | |
Близкие понятия | Дизайн, Агентное моделирование |
Среды и средства для освоения понятия | NetLogo |
Основные принципы
1. Какие общие концепции, теории, гипотезы или подходы к моделированию лежат в основе построения модели? Как модель связана с предыдущими представлениями об изучаемой проблеме?
2. Какие принципы были включены в дизайн модели?
Эмерджентность
3. Что представляют важные результаты? Какие из них возникают из механистического представления адаптивного поведения отдельных агентов, а какие диктуются правилами, которые заставляют модель давать определенные результаты?
Адаптация
4. Какое адаптивное поведение демонстрируют агенты и почему? Как они могут реагировать на изменения в своей среде и в самих себе? Какие решения они принимают?
5. Как моделируется такое поведение? Предполагают ли субмодели адаптивного поведения, что агенты выбирают среди альтернатив, явно рассматривая, что с наибольшей вероятностью увеличит какую-то конкретную цель (прямое стремление к цели), или они просто заставляют агентов воспроизводить модели поведения, наблюдаемые в реальных системах (косвенное стремление к цели)?
Цели
6. Для адаптивного поведения, моделируемого как прямое стремление к цели, какая мера целей агента (например, «приспособленность» в экологии, «полезность» в экономике) используется для оценки альтернативных решений? Этот объективный показатель представляет собой внутреннюю модель агента, показывающую, какую выгоду он получит от каждого сделанного им выбора. Какие элементы будущего успеха входят в объективный показатель (например, возможность дожить до будущего репродуктивного периода; вероятность остаться в бизнесе в течение некоторого периода; прибыль в следующем отчетном периоде)? Как объективная мера представляет процессы, которые связывают адаптивное поведение с важными переменными агентов и их среды?
7. Как были выбраны переменные и механизмы объективного измерения (например, риски смертности или выхода из бизнеса, условия, необходимые для воспроизводства или прибыльности) с учетом цели модели и реальной системы, которую она представляет? Как текущее внутреннее состояние агента учитывается при моделировании решений? Меняется ли объективная мера по мере смены агента?
Обучение
8. Меняются ли агенты со временем, как они принимают адаптивные решения, в результате своего нового опыта? Если да, то как?
Прогнозирование
9. Как агенты предсказывают будущие условия (внешние и внутренние) в своих подмоделях адаптивного поведения? Какие предположения или механизмы реальных моделируемых людей были основой для моделирования прогнозов?
10. Как моделируемые предсказания используют такие механизмы, как память, обучение или сигналы окружающей среды? Или предсказание является «неявным», то есть подразумевается только в простых правилах адаптивного поведения?
Ощущение
11. Какие переменные своего окружения и самих себя агенты, как предполагается, чувствуют и, следовательно, могут учитывать в своем поведении? На чем основаны эти предположения?
12. Какие механизмы восприятия моделируются в явном виде и какие воспринимаемые переменные являются агентами, а не просто «знают»?
13. С какой точностью или неопределенностью предполагается, что агенты «знают» или ощущают, какие переменные? На какие расстояния (в географическом, сетевом или другом пространстве)?
Взаимодействие
14. Как взаимодействуют агенты модели? Взаимодействуют ли они напрямую друг с другом (например, напрямую ли один агент меняет состояние других)? Или взаимодействие опосредовано, например, через конкуренцию за ресурс?
15. С какими другими агентами взаимодействует агент?
16. Какие реальные механизмы взаимодействия были основаны на представлении взаимодействия в модели? В каких пространственных и временных масштабах они происходят?
Стохастичность
17. Как случайные процессы (основанные на псевдослучайных числах) используются в модели и почему? Используются ли случайные процессы: для инициализации модели? Потому что считается важным, чтобы некоторые процессы были изменчивыми, но неважно представлять причины изменчивости? Воспроизвести наблюдаемое поведение с использованием эмпирически определенных вероятностей?
Коллективы (породы) агентов
18. Представлены ли в модели коллективы - совокупности агентов, которые влияют на состояние или поведение агентов-членов и на которые влияют их члены?
19. Если да, то как представлены коллективы? Возникают ли они из поведения агентов, или агентам даны подмодели поведения, которые навязывают формирование коллективов? Или коллективы моделируются как агент другого типа со своим собственным поведением и переменными состояния?
Наблюдение
20. Какие выходные данные модели необходимы для наблюдения за ее внутренней динамикой, а также за ее поведением на системном уровне? Какие инструменты (графика, вывод в файл, данные о людях и т. Д.) Необходимы для получения этих результатов?
21. Какие результаты и анализ необходимы для проверки модели на соответствие критериям полезности - обычно это набор шаблонов, - определенных в элементе «Цель и паттерны»? Какие результаты необходимы для решения проблемы, для которой была разработана модель?