Дифференциальное уравнение в частных производных: различия между версиями
Patarakin (обсуждение | вклад) |
Patarakin (обсуждение | вклад) |
||
Строка 1: | Строка 1: | ||
{{Понятие | {{Понятие | ||
|Description=Дифференциа́льное уравне́ние в ча́стных произво́дных (частные случаи также известны как уравне́ния математи́ческой фи́зики, УМФ) — дифференциальное уравнение, содержащее неизвестные функции нескольких переменных и их частные производные. | |Description=Дифференциа́льное уравне́ние в ча́стных произво́дных (частные случаи также известны как уравне́ния математи́ческой фи́зики, УМФ) — дифференциальное уравнение, содержащее неизвестные функции нескольких переменных и их частные производные. | ||
|Field_of_knowledge=Математика | |||
|Inventor=Эйлер | |Inventor=Эйлер | ||
|similar_concepts=Дифференциальное уравнение | |similar_concepts=Дифференциальное уравнение |
Версия 14:02, 16 февраля 2024
Описание | Дифференциа́льное уравне́ние в ча́стных произво́дных (частные случаи также известны как уравне́ния математи́ческой фи́зики, УМФ) — дифференциальное уравнение, содержащее неизвестные функции нескольких переменных и их частные производные. |
---|---|
Область знаний | Математика |
Авторы | Эйлер |
Поясняющее видео | |
Близкие понятия | Дифференциальное уравнение |
Среды и средства для освоения понятия | Wolfram |
Рассмотрим сравнительно простое уравнение в частных производных:
- [math]\displaystyle{ \frac{\partial}{\partial y}u(x,y)=0\, . }[/math]
Из этого соотношения следует, что значение функции [math]\displaystyle{ u(x,y) }[/math] не зависит от [math]\displaystyle{ y }[/math]. Мы можем положить её равной произвольной функции от [math]\displaystyle{ x }[/math]. Следовательно, общее решение уравнения следующее:
- [math]\displaystyle{ u(x,y) = f(x), }[/math]
где [math]\displaystyle{ f(x) }[/math] — произвольная функция переменной [math]\displaystyle{ x }[/math]. Аналогичное обыкновенное дифференциальное уравнение имеет вид:
- [math]\displaystyle{ \frac{dv(x)}{dx}=0 }[/math]
и его решение
- [math]\displaystyle{ v(x) = c, }[/math]
где c — произвольная математическая константа (не зависящая от [math]\displaystyle{ x }[/math]). Эти два примера показывают, что общее решение обыкновенного дифференциального уравнения содержит произвольные константы, но общее решение дифференциального уравнения в частных производных содержит произвольные функции. Решение дифференциального уравнения в частных производных, вообще говоря, не единственно. В общем случае на границе рассматриваемой области задаются дополнительные условия. Например, решение выше рассмотренного уравнения (функция [math]\displaystyle{ f(x) }[/math]) определяется единственным образом, если [math]\displaystyle{ u }[/math] определена на линии [math]\displaystyle{ y=0 }[/math].