Вычислительная сложность: различия между версиями

Материал из Поле цифровой дидактики
(Новая страница: «{{Понятие |Field_of_knowledge=Информатика |Environment=Scratch, Snap!, Python }} '''Вычисли́тельная сло́жность''' — понятие в информатике и теории алгоритмов, обозначающее функцию зависимости объёма работы, которая выполняется некоторым алго...»)
 
Строка 1: Строка 1:
{{Понятие
{{Понятие
|Description=Вычисли́тельная сло́жность — понятие в информатике и теории алгоритмов, обозначающее функцию зависимости объёма работы, которая выполняется некоторым алгоритмом, от размера входных данных.
|Field_of_knowledge=Информатика
|Field_of_knowledge=Информатика
|Environment=Scratch, Snap!, Python
|Environment=Scratch, Snap!, Python
}}
}}
'''Вычисли́тельная сло́жность''' — понятие в [[информатика|информатике]] и [[теория алгоритмов|теории алгоритмов]], обозначающее функцию зависимости объёма работы, которая выполняется некоторым алгоритмом, от размера входных данных. Раздел, изучающий вычислительную сложность, называется [[Теория сложности вычислений|теорией сложности вычислений]]. Объём работы обычно измеряется [[абстракция|абстрактными]] понятиями времени и пространства, называемыми [[Вычислительные ресурсы|вычислительными ресурсами]]. Время определяется количеством элементарных шагов, необходимых для решения задачи, тогда как пространство определяется объёмом памяти или места на [[носитель информации|носителе данных]]. Таким образом, в этой области предпринимается попытка ответить на центральный вопрос разработки алгоритмов: «как изменится время исполнения и объём занятой памяти в зависимости от размера входа?». Здесь под размером входа понимается длина описания данных задачи в [[бит]]ах (например, в [[задача коммивояжёра|задаче коммивояжёра]] длина входа почти пропорциональна количеству городов и дорог между ними), а под размером выхода — длина описания решения задачи (наилучшего маршрута в задаче коммивояжёра).
'''Вычисли́тельная сло́жность''' — понятие в [[информатика|информатике]] и [[теория алгоритмов|теории алгоритмов]], обозначающее функцию зависимости объёма работы, которая выполняется некоторым алгоритмом, от размера входных данных. Раздел, изучающий вычислительную сложность, называется [[Теория сложности вычислений|теорией сложности вычислений]]. Объём работы обычно измеряется [[абстракция|абстрактными]] понятиями времени и пространства, называемыми [[Вычислительные ресурсы|вычислительными ресурсами]]. Время определяется количеством элементарных шагов, необходимых для решения задачи, тогда как пространство определяется объёмом памяти или места на [[носитель информации|носителе данных]]. Таким образом, в этой области предпринимается попытка ответить на центральный вопрос разработки алгоритмов: «как изменится время исполнения и объём занятой памяти в зависимости от размера входа?». Здесь под размером входа понимается длина описания данных задачи в [[бит]]ах (например, в [[задача коммивояжёра|задаче коммивояжёра]] длина входа почти пропорциональна количеству городов и дорог между ними), а под размером выхода — длина описания решения задачи (наилучшего маршрута в задаче коммивояжёра).

Версия 21:27, 19 октября 2022


Описание Вычисли́тельная сло́жность — понятие в информатике и теории алгоритмов, обозначающее функцию зависимости объёма работы, которая выполняется некоторым алгоритмом, от размера входных данных.
Область знаний Информатика
Авторы
Поясняющее видео
Близкие понятия
Среды и средства для освоения понятия Scratch, Snap!, Python

Вычисли́тельная сло́жность — понятие в информатике и теории алгоритмов, обозначающее функцию зависимости объёма работы, которая выполняется некоторым алгоритмом, от размера входных данных. Раздел, изучающий вычислительную сложность, называется теорией сложности вычислений. Объём работы обычно измеряется абстрактными понятиями времени и пространства, называемыми вычислительными ресурсами. Время определяется количеством элементарных шагов, необходимых для решения задачи, тогда как пространство определяется объёмом памяти или места на носителе данных. Таким образом, в этой области предпринимается попытка ответить на центральный вопрос разработки алгоритмов: «как изменится время исполнения и объём занятой памяти в зависимости от размера входа?». Здесь под размером входа понимается длина описания данных задачи в битах (например, в задаче коммивояжёра длина входа почти пропорциональна количеству городов и дорог между ними), а под размером выхода — длина описания решения задачи (наилучшего маршрута в задаче коммивояжёра).