Искусственный интеллект: различия между версиями
Материал из Поле цифровой дидактики
Patarakin (обсуждение | вклад) |
Patarakin (обсуждение | вклад) |
||
Строка 3: | Строка 3: | ||
|Field_of_knowledge=Информатика, Математика | |Field_of_knowledge=Информатика, Математика | ||
|Inventor=МакКартни,Минский | |Inventor=МакКартни,Минский | ||
|similar_concepts=Интеллект человека, Eliza, Машинное обучение, Глубокое обучение, Нейросеть, Персептрон, Коннекционизм, чат-бот | |similar_concepts=Интеллект человека, Eliza, Машинное обучение, Глубокое обучение, Нейросеть, Персептрон, Коннекционизм, чат-бот, Генеративный искусственный интеллект | ||
|Environment=Scratch, Snap!, Python, Scheme | |Environment=Scratch, Snap!, Python, Scheme | ||
|FieldActivity=Digital Citizen, Innovative Designer, Computational Thinker, Цифровой Трансформатор | |FieldActivity=Digital Citizen, Innovative Designer, Computational Thinker, Цифровой Трансформатор |
Версия 18:01, 17 января 2023
Описание | Способность компьютера обучаться и выполнять действия свойственные человеческому интеллекту. Автоматизация задач, которые принято считать человеческими: мышление, принятие решений, решение проблем, обучение и т. д. Область исследований, направленная на разъяснение и эмуляцию разумного поведения в терминах вычислительных процессов |
---|---|
Область знаний | Информатика, Математика |
Авторы | МакКартни, Минский |
Поясняющее видео | |
Близкие понятия | Интеллект человека, Eliza, Машинное обучение, Глубокое обучение, Нейросеть, Персептрон, Коннекционизм, Чат-бот, Генеративный искусственный интеллект |
Среды и средства для освоения понятия | Scratch, Snap!, Python, Scheme |
Имитация интеллекта - имеется в виду попытка имитировать интеллект человека. Термин «Искусственный интеллект» был введён разработчиком языка программирования Lisp Джоном МакКарти в 1956 г. на конференции в Дартмутском колледже.
Цель ИИ заключается в том, чтобы научить компьютеры имитировать разумное поведение, решать задачи, требующие интеллекта.
Список публикаций
- A Classification of Cognitive Agents // Proceedings of the Twenty-fourth Annual Conference of the Cognitive Science Society. Routledge, 2019. P. 256–261.
- Bordini R.H. et al. Agent programming in the cognitive era // Auton Agent Multi-Agent Syst. 2020. Vol. 34, № 2. P. 37.
- Lanza F., Seidita V., Chella A. Agents and robots for collaborating and supporting physicians in healthcare scenarios // Journal of Biomedical Informatics. 2020. Vol. 108. P. 103483.
- Aghababaei M., Koliou M. An agent-based modeling approach for community resilience assessment accounting for system interdependencies: Application on education system // Engineering Structures. 2022. Vol. 255. P. 113889.
- Southgate E. et al. Artificial Intelligence and emerging technologies in schools: research report: Report. Department of Education and Training (Australia), 2019.
- Perrotta C., Selwyn N. Deep learning goes to school: toward a relational understanding of AI in education // Learning, Media and Technology. 2020. Vol. 45, № 3. P. 251–269.
- Clark P. Elementary School Science and Math Tests as a Driver for AI: Take the Aristo Challenge! // Proceedings of the AAAI Conference on Artificial Intelligence. 2015. Vol. 29, № 2. P. 4019–4021.
- Jobin A., Scheibner J., Vayena E. Ethics guidelines in Citizen Science: Report. ETH Zurich, 2020.
- Anjomshoae S. et al. Explainable Agents and Robots : Results from a Systematic Literature Review. International Foundation for Autonomous Agents and MultiAgent Systems, 2019. P. 1078–1088.
- Sanusi I.T., Oyelere S.S., Omidiora J.O. Exploring teachers’ preconceptions of teaching machine learning in high school: A preliminary insight from Africa // Computers and Education Open. 2022. Vol. 3. P. 100072.
- García-Magariño I., Plaza I. FTS-SOCI: An agent-based framework for simulating teaching strategies with evolutions of sociograms // Simulation Modelling Practice and Theory. 2015. Vol. 57. P. 161–178.
- Estevez J., Garate G., Graña M. Gentle Introduction to Artificial Intelligence for High-School Students Using Scratch // IEEE Access. 2019. Vol. 7. P. 179027–179036.
- Carvalho L. et al. How can we design for learning in an AI world? // Computers and Education: Artificial Intelligence. 2022. Vol. 3. P. 100053.
- Reeder K., Lee H. Impact of artificial intelligence on US medical students’ choice of radiology // Clinical Imaging. 2022. Vol. 81. P. 67–71.
- Scheibner J., Jobin A., Vayena E. Internet of Things Devices, Citizen Science Research and the Right to Science: Ethical and Legal Issues // The Cambridge Handbook of Information Technology, Life Sciences and Human Rights / ed. Ienca M. et al. Cambridge, United Kingdom: Cambridge University Press, 2022. P. 231–243.
- Nazir S. et al. Internet of Things for Healthcare Using Effects of Mobile Computing: A Systematic Literature Review // Wireless Communications and Mobile Computing. Hindawi, 2019. Vol. 2019. P. e5931315.
- Burgsteiner H., Kandlhofer M., Steinbauer G. IRobot: Teaching the Basics of Artificial Intelligence in High Schools // Proceedings of the AAAI Conference on Artificial Intelligence. 2016. Vol. 30, № 1.
- Woo D.J., Wang Y., Susanto H. Student-AI Creative Writing: Pedagogical Strategies for Applying Natural Language Generation in Schools: arXiv:2207.01484. arXiv, 2022.
- Liebig L. et al. Subnational AI policy: shaping AI in a multi-level governance system // AI & Soc. 2022.
- Georgeff M. et al. The Belief-Desire-Intention Model of Agency // Intelligent Agents V: Agents Theories, Architectures, and Languages / ed. Müller J.P., Rao A.S., Singh M.P. Berlin, Heidelberg: Springer, 1999. P. 1–10.
- Jobin A., Ienca M., Vayena E. The global landscape of AI ethics guidelines: 9 // Nat Mach Intell. Nature Publishing Group, 2019. Vol. 1, № 9. P. 389–399.
- Ara Shaikh A. et al. The Role of Machine Learning and Artificial Intelligence for making a Digital Classroom and its sustainable Impact on Education during Covid-19 // Materials Today: Proceedings. 2022. Vol. 56. P. 3211–3215.
- Belinchon E. et al. Towards an Inclusive Future in AI. A Global Participatory Process: SSRN Scholarly Paper 3505425. Rochester, NY, 2019.
- Snyder L., Klos P., Grey-Hawkins L. Transforming Teaching through Arts Integration: AI Implementation Results: Middle School Reform through Effective Arts Integration Professional Development // Journal for Learning through the Arts. Center for Learning in the Arts, Sciences and Sustainability, 2014. Vol. 10, № 1.
- Gille F., Jobin A., Ienca M. What we talk about when we talk about trust: Theory of trust for AI in healthcare // Intelligence-Based Medicine. 2020. Vol. 1–2. P. 100001.
- Kim S. et al. Why and What to Teach: AI Curriculum for Elementary School: 17 // Proceedings of the AAAI Conference on Artificial Intelligence. 2021. Vol. 35, № 17. P. 15569–15576.