Регрессионная модель

Материал из Поле цифровой дидактики
Описание Регрессионная модель — это статистический инструмент, который помогает нам предсказывать значение одной переменной, исходя из значений других переменных. Это способ найти закономерность в данных и использовать её для предсказания будущих значений. В статье описано, как построить регрессионную модель и провести регрессионный анализ (на примере Language Change)
Область знаний Статистика, Моделирование
Область использования (ISTE)
Возрастная категория 17


Поясняющее видео
Близкие рецепту понятия Регрессия, Переменная, Остаток
Среды и средства для приготовления рецепта: R, BehaviorSpace, NetLogo, Language Change, StatKey

Регрессионная модель

Регрессионная модель описывает связь между переменными с помощью уравнения. Самая простая форма — линейная регрессия: [math]\displaystyle{ Y = \beta_0 + \beta_1 \cdot X + \varepsilon }[/math]

Где
  • Y — переменная, которую мы хотим предсказать (зависимая переменная)
  • X — переменная, которую мы используем для предсказания (независимая переменная)
  • β₀ (бета ноль) — свободный член (значение Y, когда X = 0)
  • β₁ (бета один) — коэффициент при X (показывает, насколько Y изменится при увеличении X на единицу)
  • ε (эпсилон) — ошибка модели (то, что модель не может объяснить)

Как построить регрессионную модель

На примере данных из Language Change
https://raw.githubusercontent.com/patarakin/stat-data/refs/heads/main/datasets/csv/Lang_Change_1440.csv

Спроектировать вычислительный эксперимент

на примере модели Language Change

Определить независимые и зависимые переменные


Зависимая переменная: mean_state (LCI) = mean [state] of nodes [math]\displaystyle{ LCI = \text{mean}_i [state_i] = \frac{1}{N}\sum_{i=1}^{N} state_i, \quad N=100 }[/math]

  • LCI (Language Change Index) — индекс изменения языка — среднее значение языкового состояния по всей популяции агентов
  • Смысл: показывает средний уровень распространения языковой инновации в сообществе
  • Диапазон: от 0 до 1, где 1 означает полное распространение инновации на всё сообщество, а 0 означает сохранение исходного состояния
  • LCI отражает коллективный исход языкового процесса — насколько успешно языковая инновация завладела сообществом. Это макроскопический показатель, который агрегирует микроскопические решения каждого агента о принятии или отклонении инновации.


Вырастить данные в агент-ориентированной модели

  1. Запустить вашу модель NetLogo с использованием BehaviorSpace.
  2. Вырастить данные и записать csv
  3. Разместить данные на GitHub и сделать доступными - https://raw.githubusercontent.com/patarakin/stat-data/refs/heads/main/datasets/csv/Lang_Change_1440.csv