Учебная аналитика на основе ИИ: различия между версиями

Материал из Поле цифровой дидактики
Нет описания правки
Нет описания правки
Строка 1: Строка 1:
{{Понятие
{{Понятие
|Description=AI-DRIVEN LEARNING ANALYTICS - это процесс сбора, измерения, анализа и представления данных об обучающихся и контексте их обучения с помощью алгоритмов искусственного интеллекта (ИИ) и машинного обучения (ML).
|Description=Учебная аналитика на основе ИИ (AI-DRIVEN LEARNING ANALYTICS) - это процесс сбора, измерения, анализа и представления данных об обучающихся и контексте их обучения с помощью алгоритмов искусственного интеллекта (ИИ) и машинного обучения (ML).
|Field_of_knowledge=Информатика, Педагогика, Социология, Образование, Искусственный интеллект, Управление, Большие данные
|Field_of_knowledge=Информатика, Педагогика, Социология, Образование, Искусственный интеллект, Управление, Большие данные
|similar_concepts=AI-DRIVEN LEARNING ANALYTICS
|similar_concepts=AI-DRIVEN LEARNING ANALYTICS
|Environment=https://www.elibrary.ru/item.asp?id=68905019
|Environment=https://www.elibrary.ru/item.asp?id=68905019
}}
}}
AI-Driven Learning Analytics, в отличие от Learning Analytics — это не только сбор данных (например, 75% обучающихся успешно выполнили задание), но и анализ, почему произошло именно так и какие прогнозы дальнейших действий (например,ученику Х рекомендуется персонализировать набор упражнений для успешной сдачи экзамена).
Учебная аналитика на основе ИИ (AI-Driven Learning Analytics), в отличие от Learning Analytics — это не только сбор данных (например, 75% обучающихся успешно выполнили задание), но и анализ, почему произошло именно так и какие прогнозы дальнейших действий (например,ученику Х рекомендуется персонализировать набор упражнений для успешной сдачи экзамена).


Ключевое отличие в использовании ИИ — это переход от ретроспективного анализа (что уже случилось) к прогнозной аналитике (что случится) и прескриптивной аналитике (что делать, чтобы изменить будущий результат). AI-Driven Learning Analytics как тренд применения ИИ в образовании, направлен на создание персонализированной, адаптивной и эффективной образовательной среды.
Ключевое отличие в использовании ИИ — это переход от ретроспективного анализа (что уже случилось) к прогнозной аналитике (что случится) и прескриптивной аналитике (что делать, чтобы изменить будущий результат). AI-Driven Learning Analytics как тренд применения ИИ в образовании, направлен на создание персонализированной, адаптивной и эффективной образовательной среды.

Версия от 10:50, 8 ноября 2025


Описание Учебная аналитика на основе ИИ (AI-DRIVEN LEARNING ANALYTICS) - это процесс сбора, измерения, анализа и представления данных об обучающихся и контексте их обучения с помощью алгоритмов искусственного интеллекта (ИИ) и машинного обучения (ML).
Область знаний Информатика, Педагогика, Социология, Образование, Искусственный интеллект, Управление, Большие данные
Авторы
Поясняющее видео
Близкие понятия AI-DRIVEN LEARNING ANALYTICS
Среды и средства для освоения понятия https://www.elibrary.ru/item.asp?id=68905019

Учебная аналитика на основе ИИ (AI-Driven Learning Analytics), в отличие от Learning Analytics — это не только сбор данных (например, 75% обучающихся успешно выполнили задание), но и анализ, почему произошло именно так и какие прогнозы дальнейших действий (например,ученику Х рекомендуется персонализировать набор упражнений для успешной сдачи экзамена).

Ключевое отличие в использовании ИИ — это переход от ретроспективного анализа (что уже случилось) к прогнозной аналитике (что случится) и прескриптивной аналитике (что делать, чтобы изменить будущий результат). AI-Driven Learning Analytics как тренд применения ИИ в образовании, направлен на создание персонализированной, адаптивной и эффективной образовательной среды.

Некоторые компоненты системы AI-Driven Learning Analytics:

• Machine Learning — алгоритмы, которые учатся на данных и улучшаются со временем без явного программирования.

• Natural Language Processing (NLP) — позволяет системам понимать и интерпретировать человеческий язык, что важно для анализа неструктурированных данных.

• Predictive Analytics — AI анализирует исторические данные, чтобы предсказывать будущие тенденции и поведение.