MapReduce

Материал из Поле цифровой дидактики
Версия от 14:48, 8 февраля 2026; Patarakin (обсуждение | вклад) (Новая страница: «{{Понятие |Description=MapReduce — модель распределённых вычислений, представленная компанией Google, используемая для параллельных вычислений над очень большими, вплоть до нескольких петабайт, наборами данных в компьютерных кластерах. |Field_of_knowledge=Большие данные }...»)
(разн.) ← Предыдущая версия | Текущая версия (разн.) | Следующая версия → (разн.)


Описание MapReduce — модель распределённых вычислений, представленная компанией Google, используемая для параллельных вычислений над очень большими, вплоть до нескольких петабайт, наборами данных в компьютерных кластерах.
Область знаний Большие данные
Авторы
Поясняющее видео
Близкие понятия
Среды и средства для освоения понятия

MapReduce — это фреймворк для вычисления некоторых наборов распределенных задач с использованием большого количества компьютеров (называемых «нодами»), образующих кластер.

Работа MapReduce состоит из двух шагов: Map и Reduce, названных так по аналогии с одноименными функциями высшего порядка, map и reduce.

На Map-шаге происходит предварительная обработка входных данных. Для этого один из компьютеров (называемый главным узлом — master node) получает входные данные задачи, разделяет их на части и передает другим компьютерам (рабочим узлам — worker node) для предварительной обработки.

На Reduce-шаге происходит свёртка предварительно обработанных данных. Главный узел получает ответы от рабочих узлов и на их основе формирует результат — решение задачи, которая изначально формулировалась.


Пример

Канонический пример приложения, написанного с помощью MapReduce, — это процесс, подсчитывающий, сколько раз различные слова встречаются в наборе документов:

// Функция, используемая рабочими нодами на Map-шаге
// для обработки пар ключ-значение из входного потока
void map(String name, String document):
    // Входные данные:
    //   name - название документа
    //   document - содержимое документа
    for each word in document:
        EmitIntermediate(word, "1");
 
// Функция, используемая рабочими нодами на Reduce-шаге
// для обработки пар ключ-значение, полученных на Map-шаге
void reduce(Iterator partialCounts):
    // Входные данные:
    //   partialCounts - список группированных промежуточных результатов. Количество записей в partialCounts и есть 
    //     требуемое значение
    int result = 0;
    for each v in partialCounts:
        result += parseInt(v);
    Emit(AsString(result));