Робототехника
Робототе́хника (от робот и техника; — Традиционный перевод на русский в произведениях А. Азимова. — прикладная наука, занимающаяся разработкой автоматизированных технических систем и являющаяся важнейшей технической основой развития производства
Робототехника опирается на такие дисциплины, как электроника, механика, кибернетика, телемеханика, мехатроника, информатика, сопромат, гидравлика, химия — эти дисциплины входят в состав механики-->, а также радиотехника и электротехника. Выделяют строительную, промышленную, бытовую, медицинскую, авиационную и экстремальную (военную, космическую, подводную) робототехнику.
Этимология термина
Слово «роботика» (или «роботехника», «robotics») было впервые использовано в печати Айзеком Азимовым в научно-фантастическом рассказе «Лжец», опубликованном в 1941 году.
В основу слова «робототехника» легло слово «робот», придуманное в 1920 г. чешским писателем Карелом Чапеком и его братом Йозефом для научно-фантастической пьесы Карела Чапека «Р. У. Р.» («Россумские универсальные роботы»), впервые поставленной в 1921 г. и пользовавшейся успехом у зрителей. В ней хозяин завода налаживает выпуск множества андроидов, которые сначала работают без отдыха, но потом восстают и губят своих создателейШаблон:Sfn.
История отрасли
Некоторые идеи, положенные позднее в основу робототехники, появились ещё в античную эпоху — задолго до введения перечисленных выше терминов. Найдены остатки движущихся статуй, изготовленных в I веке до нашей эры.
Важнейшие классы роботов
Можно использовать несколько подходов к классификации роботов — например, по сфере применения, по назначению, по способу передвижения, и пр. По сфере основного применения можно выделить промышленных роботов, исследовательских роботов, роботов, используемых в обучении, специальных роботов.
Важнейшие классы роботов широкого назначения — манипуляционные и мобильные роботы.
Манипуляционный робот — автоматическая машина (стационарная или передвижная), состоящая из исполнительного устройства в виде манипулятора, имеющего несколько степеней подвижности, и устройства программного управления, которая служит для выполнения в производственном процессе двигательных и управляющих функций. Такие роботы производятся в напольном, подвесном и портальном исполнениях. Получили наибольшее распространение в машиностроительных и приборостроительных отраслях.
Мобильный робот — автоматическая машина, в которой имеется движущееся шасси с автоматически управляемыми приводами. Такие роботы могут быть колёсными, шагающими и гусеничными (существуют также ползающие, плавающие и летающие мобильные робототехнические системы, см. ниже)
Компоненты роботов
Приводы
Робототехнический педипулятор, оснащённый воздушными мышцами.
- Приводы: это «мышцы» роботов. В настоящее время самыми популярными двигателями в приводах являются электрические, но применяются и другие, использующие химические вещества, жидкости или сжатый воздух.
- Двигатели постоянного тока: В настоящий момент большинство роботов используют электродвигатели, которые могут быть нескольких видов.
- Шаговые электродвигатели: Как можно предположить из названия, шаговые электродвигатели не вращаются свободно, подобно двигателям постоянного тока. Они поворачиваются пошагово на определённый угол под управлением контроллера. Это позволяет обойтись без датчика положения, так как угол, на который был сделан поворот, заведомо известен контроллеру; поэтому такие двигатели часто используются в приводах многих роботов и станках с ЧПУ.
- Пьезодвигатели: Современной альтернативой двигателям постоянного тока являются пьезодвигатели, также известные как ультразвуковые двигатели. Принцип их работы весьма оригинален: крошечные пьезоэлектрические ножки, вибрирующие с частотой более 1000 раз в секунду, заставляют мотор двигаться по окружности или прямой. Преимуществами подобных двигателей являются высокое нанометрическое разрешение, скорость и мощность, несоизмеримая с их размерами. Пьезодвигатели уже доступны на коммерческой основе и также применяются на некоторых роботах.
- Воздушные мышцы: Воздушные мышцы — простое, но мощное устройство для обеспечения силы тяги. При накачивании сжатым воздухом мышцы способны сокращаться до 40 % от своей длины. Причиной такого поведения является плетение, видимое с внешней стороны, которое заставляет мышцы быть или длинными и тонкими, или короткими и толстымиШаблон:Нет АИ. Так как способ их работы схож с биологическими мышцами, их можно использовать для производства роботов с мышцами и скелетом, аналогичными мышцам и скелету животных
- Электроактивные полимеры: Электроактивные полимеры — это вид пластмасс, который изменяет форму в ответ на электрическую стимуляцию. Они могут быть сконструированы таким образом, что могут гнуться, растягиваться или сокращаться. Впрочем, в настоящее время нет ЭАП, пригодных для производства коммерческих роботов, так как все ныне существующие их образцы неэффективны или непрочны.
- Эластичные нанотрубки: Это — многообещающая экспериментальная технология, находящаяся на ранней стадии разработки. Отсутствие дефектов в нанотрубках позволяет волокну эластично деформироваться на несколько процентов. Человеческий бицепс может быть заменён проводом из такого материала диаметром 8 мм. Подобные компактные «мышцы» могут помочь роботам в будущем обгонять и перепрыгивать человека.
Датчики
- Датчики касания.
- Датчики освещённости.
- Датчик-гироскоп.
- Датчик расстояния.
- Эхолот и другие датчики, зависящие от предназначения робота.
Способы перемещения
Колёсные и гусеничные роботы
Наиболее распространёнными роботами данного класса являютсяШаблон:SfnШаблон:Sfn четырёхколёсные и гусеничные роботы. Создаются также роботы, имеющие другое число колёс; в этом случае нередко удаётся упростить конструкцию робота, а также придать ему возможность работать в пространствах, где четырёхколёсная конструкция оказывается неработоспособной.
Двухколёсные роботы, как правило, используют для определения угла наклона корпуса робота и выработки подаваемого на приводы роботов соответствующего управляющего напряжения (с целью обеспечить удержание равновесия и выполнение необходимых перемещений) те или иные гироскопические устройства. Задача удержания равновесия двухколёсного робота связана с динамикой обратного маятника
Одноколёсные роботы во многом представляют собой развитие идей, связанных с двухколёсными роботами. Для перемещения в 2D пространстве в качестве единственного колеса может использоваться шар, приводимый во вращение несколькими приводами. Несколько разработок подобных роботов уже существуют. Примерами могут служить шаробот разработанный в университете Карнеги — Меллона, шаробот «BallIP», разработанный в университете Тохоку Гакуин
Для перемещения по неровным поверхностям, траве и каменистой местности разрабатываются шестиколёсные роботы, которые имеют большее сцепление по сравнению с четырёхколёсными. Ещё большее сцепление обеспечивают гусеницы. Многие современные боевые роботы, а также роботы, предназначенные для перемещения по грубым поверхностям, разрабатываются как гусеничные. Вместе с тем, затруднено использование подобных роботов в помещениях, на гладких покрытиях и коврах.
Шагающие роботы
Первые публикации, посвящённые теоретическим и практическим вопросам создания шагающих роботов, относятся к 1970—1980-м годам
Перемещение робота с использованием «ног» представляет собой сложную задачу динамики. Уже создано некоторое количество роботов, перемещающихся на двух ногах, но эти роботы пока не могут достичь такого устойчивого движения, какое присуще человеку. Также создано множество механизмов, перемещающихся на более чем двух конечностях.
Роботы, использующие две ноги, как правило, хорошо перемещаются по полу, а некоторые конструкции могут перемещаться по лестнице. Перемещение по пересечённой местности является сложной задачей для роботов такого типа. Существует ряд технологий, позволяющих перемещаться шагающим роботам:
- Сервопривод + гидромеханический привод — ранняя технология конструирования шагающих роботов, реализованная в ряде моделей экспериментальных роботов изготовленных компанией General Electric в 1960-е гг. Первым воплощённым в металле по указанной технологии проектом GE и, по всей вероятности, первым в мире шагающим роботом военного назначения стал «четвероногий транспортёр» Walking Truck (машина имеет роботизированные конечности, управление осуществляется человеком, находящимся непосредственно в кабине).
- ZMP-технология: Шаблон:Не переведено (Шаблон:Lang-en, «точка нулевого момента») — алгоритм, использующийся в роботах, подобных ASIMO компании Хонда. Бортовой компьютер управляет роботом таким образом, чтобы сумма всех внешних сил, действующих на робота, была направлена в сторону поверхности, по которой перемещается робот. Благодаря этому не создаётся крутящего момента, который мог бы стать причиной падения робота
Системы управления
Под управлением роботом понимается решение комплекса задач, связанных с адаптацией робота к кругу решаемых им задач, программированием движений, синтезом системы управления и её программного обеспечения
По типу управления робототехнические системы подразделяются на:
- Биотехнические:
- командные (кнопочное и рычажное управление отдельными звеньями робота);
- копирующие (повтор движения человека, возможна реализация обратной связи, передающей прилагаемое усилие, экзоскелеты);
- полуавтоматические (управление одним командным органом, например, рукояткой всей кинематической схемой робота);
- Автоматические:
- программные (функционируют по заранее заданной программе, в основном предназначены для решения однообразных задач в неизменных условиях окружения);
- адаптивные (решают типовые задачи, но адаптируются под условия функционирования);
- интеллектуальные (наиболее развитые автоматические системы);
- Интерактивные:
- автоматизированные (возможно чередование автоматических и биотехнических режимов);
- супервизорные (автоматические системы, в которых человек выполняет только целеуказательные функции);
- диалоговые (робот участвует в диалоге с человеком по выбору стратегии поведения, при этом как правило робот оснащается экспертной системой, способной прогнозировать результаты манипуляций и дающей советы по выбору цели).
Среди основных задач управления роботами выделяют такиеШаблон:Sfn:
- планирование положений;
- планирование движений;
- планирование сил и моментов;
- анализ динамической точности;
- идентификация кинематических и динамических характеристик робота.
В развитии методов управления роботами огромное значение имеют достижения технической кибернетики и теории автоматического управления.
Области применения
Среднее число роботов в мире в 2017 г. составляет 69 на 10 000 работников. Наибольшее число роботов в Южной Корее — 531 на 10 000 работников, Сингапуре — 398, Японии — 305, Германии — 301<ref name="NKJ201711">Шаблон:Статья</ref>.
Образование
Робототехнические комплексы также популярны в области образования как современные высокотехнологичные исследовательские инструменты в области теории автоматического управления и мехатроники. Их использование в различных учебных заведениях среднего и высшего профессионального образования позволяет реализовывать концепцию «обучение на проектах», положенную в основу такой крупной совместной образовательной программы США и Европейского союза, как ILERT. Применение возможностей робототехнических комплексов в инженерном образовании даёт возможность одновременной отработки профессиональных навыков сразу по нескольким смежным дисциплинам: механика, теория управления, схемотехника, программирование, теория информации. Востребованность комплексных знаний способствует развитию связей между исследовательскими коллективами. Кроме того, студенты уже в процессе профильной подготовки сталкиваются с необходимостью решать реальные практические задачи.
Популярные робототехнические комплексы для учебных лабораторий:
- Mechatronics Control Kit
- Festo Didactic
- LEGO Mindstorms
- fischertechnik.
- образовательные наборы на основе Arduino
Робототехника включена в школьную программу 7-9 классов<ref>Основы образовательной робототехники : учебно-методическое пособие / авт.-сост. Д. М. Гребнева ; Нижнетагильский гос. социально-пед. ин-т (филиал) Российского гос. профессионально-пед. ун-та. — Нижний Тагил : НТГСПИ, 2017. — 108 c.</ref>
Промышленность
На производстве роботы успешно используются уже на протяжении десятилетий. Роботы успешно заменяют человека при выполнении рутинных, энергоемких, опасных операций. Роботы не устают, им не нужны паузы на отдых, вода и пища. Роботы не требуют повышения заработной платы и не являются членами профсоюзов.
Как правило, промышленные роботы не обладают искусственным интеллектом. Типичным является повторение одних и тех же перемещений манипулятора по жесткой программе.
Большие успехи достигнуты, например, в применении роботов на конвейерах автомобильных заводов. Уже существуют планы предприятий автомобильной промышленности, где все процессы сборки автомобилей и транспортировки полуфабрикатов будут осуществляться роботами, а люди будут только их контролировать<ref>Константин Кузнецов Умная фабрика: как автомобили собираются без людей // Популярная механика. — 2017. — № 5. — С. 86-87. — URL: http://www.popmech.ru/business-news/334232-umnaya-fabrika-kak-avtomobili-sobirayutsya-bez-lyudey/ Шаблон:Wayback</ref>
