Многоагентная система

Материал из Поле цифровой дидактики
Файл:IntelligentAgent-SimpleReflex.png
Обычный агент
Файл:IntelligentAgent-Learning.svg
Обучающийся агент

Многоагентная система (МАЅ, Шаблон:Lang-en) — система, образованная несколькими взаимодействующими интеллектуальными агентами. Многоагентные системы могут быть использованы для решения таких проблем, которые сложно или невозможно решить с помощью одного агента или Шаблон:Не переведено. Примерами таких задач являются онлайн-торговля<ref>Alex Rogers and E. David and J.Schiff and N.R. Jennings. The Effects of Proxy Bidding and Minimum Bid Increments within eBay Auctions Шаблон:Wayback, ACM Transactions on the Web, 2007</ref>, ликвидация чрезвычайных ситуаций<ref>Nathan Schurr and Janusz Marecki and Milind Tambe and Paul Scerri et.al. The Future of Disaster Response: Humans Working with Multiagent Teams using DEFACTO Шаблон:Wayback, 2005.</ref>, и моделирование социальных структур<ref>Ron Sun and Isaac Naveh. Simulating Organizational Decision-Making Using a Cognitively Realistic Agent Model Шаблон:Wayback, Journal of Artificial Societies and Social Simulation.</ref>.

Обзор

В многоагентной системе агенты имеют несколько важных характеристик<ref>Michael Wooldridge, An Introduction to MultiAgent Systems, John Wiley & Sons Ltd, 2002, paperback, 366 pages, ISBN 0-471-49691-X.</ref>:

  • Автономность: агенты, хотя бы частично, независимы
  • Ограниченность представления: ни у одного из агентов нет представления о всей системе, или система слишком сложна, чтобы знание о ней имело практическое применение для агента.
  • Децентрализация: нет агентов, управляющих всей системой<ref>

Liviu Panait, Sean Luke: Cooperative Multi-Agent Learning: The State of the Art. Autonomous Agents and Multi-Agent Systems 11(3): 387—434 (2005)</ref>

Обычно в многоагентных системах исследуются программные агенты. Тем не менее, составляющими мультиагентной системы могут также быть роботы, люди или команды людей. Также, многоагентные системы могут содержать и смешанные команды.

В многоагентных системах может проявляться самоорганизация и сложное поведение даже если стратегия поведения каждого агента достаточно проста. Это лежит в основе так называемого роевого интеллекта.

Агенты могут обмениваться полученными знаниями, используя некоторый специальный язык и подчиняясь установленным правилам «общения» (протоколам) в системе. Примерами таких языков являются Knowledge Query Manipulation Language (KQML) и FIPA’s Agent Communication Language (ACL). Такие языки позволяют агентам не просто обмениваться данными, а вести «диалог», включающий запросы, ответы, согласия, отказы и согласование действий.

Изучение многоагентных систем

Изучение многоагентных систем связано с решением проблем искусственного интеллекта.

Темы для исследования в рамках МАС:

  1. знания, желания и намерения (BDI),
  2. кооперация и координация,
  3. организация,
  4. коммуникация,
  5. согласование,
  6. распределенное решение,
  7. распределенное решение задач,
  8. мультиагентное обучение
  9. надёжность и устойчивость к сбоям

Парадигмы многоагентных систем

Многие МАС имеют компьютерные реализации, основанные на пошаговом имитационном моделировании. Компоненты МАС обычно взаимодействуют через весовую матрицу запросов,

 Speed-VERY_IMPORTANT: min=45 mph,
 Path length-MEDIUM_IMPORTANCE: max=60 expectedMax=40,
 Max-Weight-UNIMPORTANT
 Contract Priority-REGULAR

и матрицу ответов,

 Speed-min:50 but only if weather sunny,
 Path length:25 for sunny / 46 for rainy
 Contract Priority-REGULAR
 note - ambulance will override this priority and you'll have to wait

Модель «Запрос — Ответ — Соглашение» — обычное явление для МАС. Схема реализуется за несколько шагов:

  1. сначала всем задаётся вопрос наподобие: «Кто может мне помочь?»
  2. на что только «способные» отвечают «Я смогу, за такую-то цену»
  3. в конечном итоге, устанавливается «соглашение»

Для последнего шага обычно требуется ещё несколько (более мелких) актов обмена информацией. При этом принимаются во внимание другие компоненты, в том числе уже достигнутые «соглашения» и ограничения среды.

Другой часто используемой парадигмой в МАС является «феромон», где компоненты «оставляют» информацию для следующих в очереди или ближайших компонентов. Такие «феромоны» могут испаряться со временем, то есть их значения могут изменяться со временем.

Свойства

МАС также относятся к самоорганизующимся системам, так как в них ищется оптимальное решение задачи без внешнего вмешательства. Под оптимальным решением понимается решение, на которое потрачено наименьшее количество энергии в условиях ограниченных ресурсов.

Главное достоинство МАС — это гибкость. Многоагентная система может быть дополнена и модифицирована без переписывания значительной части программы. Также эти системы обладают способностью к самовосстановлению и обладают устойчивостью к сбоям, благодаря достаточному запасу компонентов и самоорганизации.

Применение МАС

Многоагентные системы применяются в нашей жизни в графических приложениях, например, в компьютерных играх. Агентные системы также были использованы в фильмах<ref>Massive, Film showcase Шаблон:Wayback</ref>. Теория МАС используется в составных системах обороны. Также МАС применяются в транспорте, логистике, графике, геоинформационных системах, робототехнике и многих других. Многоагентные системы хорошо зарекомендовали себя в сфере сетевых и мобильных технологий, для обеспечения автоматического и динамического баланса нагруженности, расширяемости и способности к самовосстановлению.

См. также

Примечания

Шаблон:Примечания

Литература

Ссылки

Шаблон:Искусственный интеллект