Регрессионный анализ: различия между версиями
Материал из Поле цифровой дидактики
Patarakin (обсуждение | вклад) (Новая страница: «{{Понятие |Description=Регрессио́нный анализ — набор статистических методов исследования влияния одной или нескольких независимых переменныхна зависимую переменную. Независимые переменные иначе называют регрессорами или предикторами, а зависимые перем...») |
Patarakin (обсуждение | вклад) |
||
Строка 2: | Строка 2: | ||
|Description=Регрессио́нный анализ — набор статистических методов исследования влияния одной или нескольких независимых переменныхна зависимую переменную. Независимые переменные иначе называют регрессорами или предикторами, а зависимые переменные — критериальными или регрессантами. Терминология зависимых и независимых переменных отражает лишь математическую зависимость переменных, а не причинно-следственные отношения. Наиболее распространённый вид регрессионного анализа — линейная регрессия, когда находят линейную функцию, которая, согласно определённым математическим критериям, наиболее соответствует данным. Например, в методе наименьших квадратов вычисляется прямая(или гиперплоскость), сумма квадратов между которой и данными минимальна. | |Description=Регрессио́нный анализ — набор статистических методов исследования влияния одной или нескольких независимых переменныхна зависимую переменную. Независимые переменные иначе называют регрессорами или предикторами, а зависимые переменные — критериальными или регрессантами. Терминология зависимых и независимых переменных отражает лишь математическую зависимость переменных, а не причинно-следственные отношения. Наиболее распространённый вид регрессионного анализа — линейная регрессия, когда находят линейную функцию, которая, согласно определённым математическим критериям, наиболее соответствует данным. Например, в методе наименьших квадратов вычисляется прямая(или гиперплоскость), сумма квадратов между которой и данными минимальна. | ||
|Field_of_knowledge=Информатика, Математика | |Field_of_knowledge=Информатика, Математика | ||
|Environment=R, Python | |similar_concepts=Регрессия, Множественная регрессия | ||
|Environment=R, Python, ChatGPT | |||
}} | }} | ||
Наиболее распространённый вид регрессионного анализа — линейная [[регрессия]], когда находят линейную функцию, которая, согласно определённым математическим критериям, наиболее соответствует данным. |
Текущая версия на 10:47, 2 апреля 2023
Описание | Регрессио́нный анализ — набор статистических методов исследования влияния одной или нескольких независимых переменныхна зависимую переменную. Независимые переменные иначе называют регрессорами или предикторами, а зависимые переменные — критериальными или регрессантами. Терминология зависимых и независимых переменных отражает лишь математическую зависимость переменных, а не причинно-следственные отношения. Наиболее распространённый вид регрессионного анализа — линейная регрессия, когда находят линейную функцию, которая, согласно определённым математическим критериям, наиболее соответствует данным. Например, в методе наименьших квадратов вычисляется прямая(или гиперплоскость), сумма квадратов между которой и данными минимальна. |
---|---|
Область знаний | Информатика, Математика |
Авторы | |
Поясняющее видео | |
Близкие понятия | Регрессия, Множественная регрессия |
Среды и средства для освоения понятия | R, Python, ChatGPT |
Наиболее распространённый вид регрессионного анализа — линейная регрессия, когда находят линейную функцию, которая, согласно определённым математическим критериям, наиболее соответствует данным.