K-means: различия между версиями

Материал из Поле цифровой дидактики
(Новая страница: «{{Понятие |Description=Метод k-средних (англ. k-means) — наиболее популярный метод кластеризации. Действие алгоритма таково, что он стремится минимизировать суммарное квадратичное отклонение точек кластеров от центров этих кластеров. |Field_of_knowledge=Информатика |simil...»)
 
Строка 7: Строка 7:
:: <math>V = \sum_{i=1}^{k} \sum_{x \in S_i} (x - \mu_i)^2 </math>
:: <math>V = \sum_{i=1}^{k} \sum_{x \in S_i} (x - \mu_i)^2 </math>
где <math>k</math> — число кластеров, <math>S_i</math> — полученные кластеры, <math>i = 1, 2, \dots, k</math>, а <math>\mu_i</math> — центры масс всех векторов <math>x</math> из кластера <math>S_i</math>.
где <math>k</math> — число кластеров, <math>S_i</math> — полученные кластеры, <math>i = 1, 2, \dots, k</math>, а <math>\mu_i</math> — центры масс всех векторов <math>x</math> из кластера <math>S_i</math>.
1. Estevez J., Garate G., Graña M. Gentle Introduction to [[Artificial Intelligence]] for High-School Students Using [[Scratch]] // IEEE Access. 2019. Vol. 7. P. 179027–179036.

Версия 11:13, 6 января 2023


Описание Метод k-средних (англ. k-means) — наиболее популярный метод кластеризации. Действие алгоритма таково, что он стремится минимизировать суммарное квадратичное отклонение точек кластеров от центров этих кластеров.
Область знаний Информатика
Авторы
Поясняющее видео
Близкие понятия Нейронная сеть, Искусственный интеллект
Среды и средства для освоения понятия

Действие алгоритма таково, что он стремится минимизировать суммарное квадратичное отклонение точек кластеров от центров этих кластеров:

[math]\displaystyle{ V = \sum_{i=1}^{k} \sum_{x \in S_i} (x - \mu_i)^2 }[/math]

где [math]\displaystyle{ k }[/math] — число кластеров, [math]\displaystyle{ S_i }[/math] — полученные кластеры, [math]\displaystyle{ i = 1, 2, \dots, k }[/math], а [math]\displaystyle{ \mu_i }[/math] — центры масс всех векторов [math]\displaystyle{ x }[/math] из кластера [math]\displaystyle{ S_i }[/math].


1. Estevez J., Garate G., Graña M. Gentle Introduction to Artificial Intelligence for High-School Students Using Scratch // IEEE Access. 2019. Vol. 7. P. 179027–179036.