Кластеризация: различия между версиями

Материал из Поле цифровой дидактики
Строка 10: Строка 10:
|Examples=социограмма
|Examples=социограмма
}}
}}
== Постановка задачи кластеризации ==
* ; [[ru_wikipedia:Кластерный анализ]] - interwiki
Пусть <tex>X</tex> {{---}} множество объектов, <tex>Y</tex> {{---}} множество идентификаторов (меток) кластеров.
Кластерный анализ (англ. cluster analysis) — многомерная статистическая процедура, выполняющая сбор данных, содержащих информацию о выборке объектов, и затем упорядочивающая объекты в сравнительно однородные группы. Задача кластеризации относится к статистической обработке, а также к широкому классу задач обучения без учителя.
На множестве <tex>X</tex> задана функция расстояния между объектами <tex>\rho(x,x')</tex>.
 
Дана конечная обучающая выборка объектов <tex>X^m = \{ x_1, \dots, x_m \} \subset X</tex>.
Необходимо разбить выборку на подмножества (кластеры), то есть каждому объекту <tex>x_i \in X^m</tex> сопоставить метку <tex>y_i \in Y</tex>,
таким образом чтобы объекты внутри каждого кластера были близки относительно метрики <tex>\rho</tex>, а объекты из разных кластеров значительно различались.


Глобальный коэффициент кластеризации показывает уровень сплоченности и взаимодействия группы как коллективного субъекта деятельности. В [[МЭШ]] групповой показатель кластеризации может использоваться при сравнении групп учителей, преподающих в одних школах или при сравнении группировок, преподающих различные учебные дисциплины.
Глобальный коэффициент кластеризации показывает уровень сплоченности и взаимодействия группы как коллективного субъекта деятельности. В [[МЭШ]] групповой показатель кластеризации может использоваться при сравнении групп учителей, преподающих в одних школах или при сравнении группировок, преподающих различные учебные дисциплины.

Версия 16:55, 22 марта 2024


Описание Кластеризация (англ. cluster analysis) — задача группировки множества объектов на подмножества (кластеры) таким образом, чтобы объекты из одного кластера были более похожи друг на друга, чем на объекты из других кластеров по какому-либо критерию.

Задача кластеризации относится к классу задач обучения без учителя.

  • Сетевая метрика / Кластеризация. Коэффициент кластеризации данного узла есть вероятность того, что два ближайших соседа этого узла сами есть ближайшие соседи.
Область знаний
Авторы
Поясняющее видео
Близкие понятия кластер
Среды и средства для освоения понятия R, NetLogo, Python, OpenRepGrid, WenGrid

Кластерный анализ (англ. cluster analysis) — многомерная статистическая процедура, выполняющая сбор данных, содержащих информацию о выборке объектов, и затем упорядочивающая объекты в сравнительно однородные группы. Задача кластеризации относится к статистической обработке, а также к широкому классу задач обучения без учителя.


Глобальный коэффициент кластеризации показывает уровень сплоченности и взаимодействия группы как коллективного субъекта деятельности. В МЭШ групповой показатель кластеризации может использоваться при сравнении групп учителей, преподающих в одних школах или при сравнении группировок, преподающих различные учебные дисциплины.