Тип-произведение

Материал из Поле цифровой дидактики

Тип-произведение — конструкция в языках программирования и интуиционистской теории типов, тип данных, построенный как декартово произведение исходных типов; другими словами — кортеж типов. Использованные типы и порядок их следования определяют типа-произведения; порядок следования объектов в создаваемом кортеже сохраняется на протяжении его времени жизни согласно заданной сигнатуре.

Теоретическое и прикладное значение

В языках, использующих вызов по значению, тип-произведение может интерпретироваться как произведение в категории типов.

Кортеж типов как чистое воплощение типа-произведения служит формальным обоснованием для более часто встречающегося в языках составного типа, хотя в некоторых языках реализованы оба контейнера. Разница обычно заключается в том, что кортежи задают и сохраняют порядок следования своих компонентов в памяти ЭВМ (это важно при обращении к их компонентам посредством адресной арифметики), но не предоставляют возможности доступа к ним посредством квалифицированных идентификаторов, а записи, наоборот, определяют идентификаторы, но не определяют порядок следования.


В одних языках (например, в Си или Паскале) порядок размещения значений в памяти задаётся при определении типа и сохраняется на протяжении времени жизни объектов, что даёт возможность косвенного доступа (например, через указатели); в других языках (например, в ML) порядок размещения не определён, так что доступ к значениям возможен только по квалифицированному идентификатору. В некоторых языках, хотя порядок следования и сохраняется, но выравнивание контролируется компилятором, так что использование адресной арифметики может оказаться платформенно-зависимым. Некоторые языки позволяют присваивание между экземплярами разных записей, игнорируя различия в идентификаторах компонентов записей, и основываясь только на порядке следования. Другие языки, напротив, учитывают только совпадение имён, разрешая различия в порядке их определения.

Впервые записи были представлены в языке Кобол, где они имели довольно сложную нотацию. При проверке согласования типов, Кобол учитывает только совпадение имён полей записей и не учитывает совпадение порядка их следования.

Кортежи служат формальным обоснованием записей в теории типов. В то же время, в языках кортежи временами могут реализовываться посредством записей, использующих в качестве идентификаторов индексные номера полей в получаемом кортеже.