Поиск в ширину
Описание | Поиск в ширину (BFS) — один из методов обхода графа. |
---|---|
Область знаний | Информатика |
Область использования (ISTE) | |
Возрастная категория | 14
|
Поясняющее видео | |
Близкие рецепту понятия | |
Среды и средства для приготовления рецепта: |
Пусть задан граф G = (V, E) и выделена исходная вершина s. Алгоритм поиска в ширину систематически обходит все ребра [math]\displaystyle{ G }[/math] для «открытия» всех вершин, достижимых из s, вычисляя при этом расстояние (минимальное количество рёбер) от s до каждой достижимой из sвершины.
Поиск в ширину имеет такое название потому, что в процессе обхода мы идём вширь, то есть перед тем как приступить к поиску вершин на расстоянии [math]\displaystyle{ k + 1 }[/math], выполняется обход вершин на расстоянии [math]\displaystyle{ k }[/math].
Поиск в ширину является одним из неинформированных алгоритмов поиска.
Работа алгоритма
Поиск в ширину работает путём последовательного просмотра отдельных уровней графа, начиная с узла-источника u
Неформальное описание
- Поместить узел, с которого начинается поиск, в изначально пустую очередь.
- Извлечь из начала очереди узел [math]\displaystyle{ u }[/math] и пометить его как развёрнутый.
- Если узел [math]\displaystyle{ u }[/math] является целевым узлом, то завершить поиск с результатом «успех».
- В противном случае, в конец очереди добавляются все преемники узла [math]\displaystyle{ u }[/math], которые ещё не развёрнуты и не находятся в очереди.
- Если очередь пуста, то все узлы связного графа были просмотрены, следовательно, целевой узел недостижим из начального; завершить поиск с результатом «неудача».
- Вернуться к п. 2.
Примечание: деление вершин на развёрнутые и не развёрнутые необходимо для произвольного графа (так как в нём могут быть циклы). Для дерева эта операция не нужна, так как каждая вершина будет выбрана один-единственный раз.
Формальное описание
Ниже приведён псевдокод алгоритма для случая, когда необходимо лишь найти целевой узел. В зависимости от конкретного применения алгоритма, может потребоваться дополнительный код, обеспечивающий сохранение нужной информации (расстояние от начального узла, узел-родитель и т. п.)
Рекурсивная формулировка:
BFS(start_node, goal_node) { return BFS'({start_node}, ∅, goal_node); } BFS'(fringe, visited, goal_node) { if(fringe == ∅) { // Целевой узел не найден return false; } if (goal_node ∈ fringe) { return true; } return BFS'({child | x ∈ fringe, child ∈ expand(x)} \ visited, visited ∪ fringe, goal_node); }
Итеративная формулировка:
BFS(start_node, goal_node) { for(all nodes i) visited[i] = false; // изначально список посещённых узлов пуст queue.push(start_node); // начиная с узла-источника visited[start_node] = true; while(! queue.empty() ) { // пока очередь не пуста node = queue.pop(); // извлечь первый элемент в очереди if(node == goal_node) { return true; // проверить, не является ли текущий узел целевым } foreach(child in expand(node)) { // все преемники текущего узла, ... if(visited[child] == false) { // ... которые ещё не были посещены ... queue.push(child); // ... добавить в конец очереди... visited[child] = true; // ... и пометить как посещённые } } } return false; // Целевой узел недостижим }
Реализация на Pascal:
function BFS(v : Node) : Boolean;
begin
enqueue(v);
while queue is not empty do
begin
curr := dequeue();
if is_goal(curr) then
begin
BFS := true;
exit;
end;
mark(curr);
for next in successors(curr) do
if not marked(next) then
begin
enqueue(next);
end;
end;
BFS := false;
end;
Свойства
Обозначим число вершин и рёбер в графе как [math]\displaystyle{ \vert V \vert }[/math] и [math]\displaystyle{ \vert E \vert }[/math] соответственно.
Пространственная сложность
Так как в памяти хранятся все развёрнутые узлы, пространственная сложность алгоритма составляет [math]\displaystyle{ O(\vert V \vert + \vert E \vert) }[/math]
Алгоритм поиска с итеративным углублением похож на поиск в ширину тем, что при каждой итерации перед переходом на следующий уровень исследуется полный уровень новых узлов, но требует значительно меньше памяти.
Временная сложность
Так как в худшем случае алгоритм посещает все узлы графа, при хранении графа в виде списков смежности, временная сложность алгоритма составляет [math]\displaystyle{ O(\vert V \vert + \vert E \vert) }[/math]
Полнота
Если у каждого узла имеется конечное число преемников, алгоритм является полным: если решение существует, алгоритм поиска в ширину его находит, независимо от того, является ли граф конечным. Однако если решения не существует, на бесконечном графе поиск не завершается.
Оптимальность
Если длины рёбер графа равны между собой, поиск в ширину является оптимальным, то есть всегда находит кратчайший путь. В случае взвешенного графа поиск в ширину находит путь, содержащий минимальное количество рёбер, но не обязательно кратчайший.
Поиск по критерию стоимости является обобщением поиска в ширину и оптимален на взвешенном графе с неотрицательными весами рёбер. Алгоритм посещает узлы графа в порядке возрастания стоимости пути из начального узла и обычно использует очередь с приоритетами.