Data in Education Seminar/31 05 2023: различия между версиями

Материал из Поле цифровой дидактики
Строка 32: Строка 32:
|url=https://netlogoweb.org/launch#https://netlogoweb.org/assets/modelslib/Sample%20Models/Biology/Flocking.nlogo
|url=https://netlogoweb.org/launch#https://netlogoweb.org/assets/modelslib/Sample%20Models/Biology/Flocking.nlogo
|width=800
|width=800
|height=800
}}
=== Sugarscape ===
https://www.youtube.com/shorts/SAXWoRcT4NM
{{#widget:iframe
|url=https://modelingcommons.org/browse/one_model/7090#model_tabs_browse_nlw
|width=1000
|height=800
|height=800
}}
}}

Версия 08:17, 29 мая 2023


Описание события Использование данных и цифровых инструментов в исторических исследованиях и преподавании науки истории
Тип события
Начало 2023-05-31T16:00:08.000Z
Окончание 2023-05-31T18:00:08.000Z
color orange
Адрес события
Видео запись события
Среды и средства, которые использовались в рамках события
Формируемые в рамках события компетенции
Область знаний
Местоположение
Формат реализации
Карта
Идёт загрузка карты…


Основные понятия

 Description
МакроскопПодобно тому, как микроскоп помогает нашему невооруженному глазу чтобы видеть бесконечно малые клетки, микробы и вирусы, тем самым поддерживает прогресс в области биологии и медицины или телескоп открывает бесконечную необъятность космоса, и подготавливает человечество к завоеванию космоса, макроскоп помогает нам справиться с другим бесконечным: бесконечно сложным. Макроскопы дают нам "видение целого" и помогают нам "синтезировать". Макроскопы позволяют нам обнаруживать закономерности и тенденции в ландшафте науки. Вместо того, чтобы делать вещи больше или меньше, макроскоп помогает изучать сети объектов, которые одновременно слишком велики, слишком медленны или слишком сложны для наших глаз.

История агентного моделирования

Сегрегация


Prisoner's dilemma

Boid (Flocking)

Urban Suite - Economic Disparity

Модели исторических событий

Литература

  1. Ponsard C., Masson A., Desmet W. Historical Knowledge Modelling and Analysis through Ontologies and Timeline Extraction Operators: Application to Computing Heritage: // Proceedings of the 10th International Conference on Model-Driven Engineering and Software Development. Online Streaming, --- Select a Country ---: SCITEPRESS - Science and Technology Publications, 2022. P. 302–309.
  2. The Joys of Big Data for Historians // Exploring Big Historical Data. WORLD SCIENTIFIC, 2021. P. 1–34. https://themacroscope.org/
  3. Nanetti A. AI, ML, and ABMS for Historical Sciences. Opportunities and Limits // Digital Orientalia. 2021. Vol. 1, № 1. P. 12–18.
  4. Computer Magazines and Historical Research // Code Nation: Personal Computing and the Learn to Program Movement in America. New York, NY, USA: Association for Computing Machinery, 2020.
  5. Ponsard C. Teaching Computer Programming to Post-millennial Kids: Overview of Goals, Activities and Supporting Tools. // CSEDU (2). 2019. P. 474–480.
  6. Nanetti A., Benvenuti D. Animation of two-dimensional pictorial works into multipurpose three-dimensional object. The Atlas of the ships of the known world depicted in the 1460 Fra Mauro’s Mappa Mundi as a showcase // SCIRES-IT-SCIentific RESearch and Information Technology. 2019. Vol. 9, № 2. P. 29–46.
  7. Floyd S.P. Historical High School Computer Science Curriculum and Current K-12 Initiatives - Proceedings of the 50th ACM Technical Symposium on Computer Science Education. New York, NY, USA: Association for Computing Machinery, 2019. P. 1287.
  8. Nanetti A., Cheong S.A. Computational History: From Big Data to Big Simulations // Big Data in Computational Social Science and Humanities / ed. Chen S.-H. Cham: Springer International Publishing, 2018. P. 337–363.
  9. Nanetti A., Cheong S.A. Computational history : from big data to big simulations. Springer Nature Switzerland AG, 2018.
  10. Matrosov Institute for System Dynamics and Control Theory SB RAS, Lermontov St. 134, Irkutsk, Russia, 664033 et al. Machine Learning in a Multi-Agent System for Distributed Computing Management // Collection of selected papers of the IV International Conference on Information Technology and Nanotechnology. IP Zaitsev V.D., 2018. P. 89–97.
  11. Chen S.-H., Yu T. Big Data in Computational Social Sciences and Humanities: An Introduction // Big Data in Computational Social Science and Humanities / ed. Chen S.-H. Cham: Springer International Publishing, 2018. P. 1–25.
  12. Francois P. et al. A macroscope for global history - Seshat Global History Databank: a methodological overview // Digital Humanities Quarterly. Alliance of Digital Humanities Organizations, 2016.
  13. Edmond J. Will Historians Ever Have Big Data? // Computational History and Data-Driven Humanities / ed. Bozic B. et al. Cham: Springer International Publishing, 2016. P. 91–105.
  14. Barceló J.A., Del Castillo F. Simulating the Past for Understanding the Present. A Critical Review // Simulating Prehistoric and Ancient Worlds / ed. Barceló J.A., Del Castillo F. Cham: Springer International Publishing, 2016. P. 1–140.
  15. Gavin M. Agent-Based Modeling and Historical Simulation // DHQ. 2014. Vol. 008, № 4.
  16. Millington J.D.A., O’Sullivan D., Perry G.L.W. Model histories: Narrative explanation in generative simulation modelling // Geoforum. 2012. Vol. 43, № 6. P. 1025–1034.